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What is this talk about ?

General problem: A sequence of random variables Xn is asymptotically
normal, i.e.

Xn−E[Xn]√
Var(Xn)

d→N (0,1).

How to prove that a sequence is asymptotically normal?

A powerful tool: analytic methods, based on the (bivariate/probability)
generating functions of the sequence.

Problem: we do not always know how to compute generating functions.

V. Féray (CNRS, IECL) Normality and dependency graphs Rouen, 2021–10 2 / 45



What is this talk about ?

General problem: A sequence of random variables Xn is asymptotically
normal, i.e.

Xn−E[Xn]√
Var(Xn)

d→N (0,1).

How to prove that a sequence is asymptotically normal?

A powerful tool: analytic methods, based on the (bivariate/probability)
generating functions of the sequence.

Problem: we do not always know how to compute generating functions.

V. Féray (CNRS, IECL) Normality and dependency graphs Rouen, 2021–10 2 / 45



What is this talk about ?

General problem: A sequence of random variables Xn is asymptotically
normal, i.e.

Xn−E[Xn]√
Var(Xn)

d→N (0,1).

How to prove that a sequence is asymptotically normal?

Other standard tool: moment (or cumulant) methods.

Today: (weighted) dependency graphs, based on cumulants and
independence (or weak dependencies) between variables.

V. Féray (CNRS, IECL) Normality and dependency graphs Rouen, 2021–10 2 / 45



What is this talk about ?

General problem: A sequence of random variables Xn is asymptotically
normal, i.e.

Xn−E[Xn]√
Var(Xn)

d→N (0,1).

How to prove that a sequence is asymptotically normal?

Other standard tool: moment (or cumulant) methods.

Today: (weighted) dependency graphs, based on cumulants and
independence (or weak dependencies) between variables.

Various examples of applications: occurrences of patterns in combinatorial
objects or statistical physics models, length of nearest neighbour graphs of
Poisson point processes, . . .
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Outline of the talk

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion
Substructure counts in graphs and permutations
Lengths of nearest neighbour graphs

2 Weighted dependency graphs
Definition and an extended normality criterion
Back to subwords and subgraphs: Markovian texts and G (n,M)
Patterns in set-partitions
Applications in statistical physics
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Dependency graphs A motivating example: substrings in random words

Substrings in random words (1/2)
(following Flajolet, Guivarc’h, Szpankowski, and Vallée, ’01)

Let w be a random word of size n with independent (identically
distributed) letters taken in a finite alphabet A .

Fix a word u, called “pattern” of length `.

An occurrence of u in w is a `-tuple i1 < ·· · < i` s.t. wi1 = u1, . . . ,wi` = u`.

Example: two occurrences of aab in w = aabbabaab (one in blue, one
underlined)

(Variants: consecutive occurrences, allowing gaps of given lengths).
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Dependency graphs A motivating example: substrings in random words

Substrings in random words (1/2)
(following Flajolet, Guivarc’h, Szpankowski, and Vallée, ’01)

Let w be a random word of size n with independent (identically
distributed) letters taken in a finite alphabet A .

Fix a word u, called “pattern” of length `.

An occurrence of u in w is a `-tuple i1 < ·· · < i` s.t. wi1 = u1, . . . ,wi` = u`.

Example: two occurrences of aab in w = aabbabaab (one in blue, one
underlined)

Question
Asymptotic behaviour of the number Xn of occurrences of u in w?

Motivations: intrusion detection in computer science, discovering
meaningful strings of DNA, ...
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Dependency graphs A motivating example: substrings in random words

Substrings in random words (2/2)

Theorem (FGSV, ’01)

We have
E[Xn]∼C1n

`, Var[Xn]=C2n
2`−1+O(n2`−2),

where C1 > 0 and C2 ≥ 0 are computable constants.
Moreover, if C2 > 0, then Xn is asymptotically normal.

The proof of asymptotic normality uses the method of moments.

I will sketch it using cumulants and dependency graphs (essentially the
same proof, but presented differently, and in a general context).

Notation: for I ⊆ [n], |I | = `, set YI = 1
[
u occurs at position I in w

]
.

Then Xn =∑
I∈([n]` )

YI .
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Dependency graphs An asymptotic normality criterion

Dependency graphs

Definition (Malyshev, ’80, Petrovskaya/Leontovich, ’82, Janson, ’88)

A graph L with vertex set A is a dependency graph for the family
{Yα,α ∈A} if the following holds for any A1,A2 ⊂A:

there is no edge
between A1 and A2

=⇒ {Yα,α ∈A1} and {Yα,α ∈A2}
are independent

Roughly: there is an edge between pairs of dependent random variables.

Example

Consider our random word problem. Let A= ([n]
`

)
and

{I1, I2} ∈EL iff I1∩ I2 6= ;.
Then L is a dependency graph for the family {YI , I ∈ ([n]

`

)
}.

�� ��Note: L is regular of degree O(n`−1)
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Dependency graphs An asymptotic normality criterion

Janson’s normality criterion

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <Mn

a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (Janson, 1988)

Assume that
(
Nn
Dn

)1/s Dn
σn

Mn → 0 for some integer s.
Then Xn is asymptotically normal.
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Dependency graphs An asymptotic normality criterion

Janson’s normality criterion

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <Mn

a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (Janson, 1988)

Assume that
(
Nn
Dn

)1/s Dn
σn

Mn → 0 for some integer s.
Then Xn is asymptotically normal.

Example: For occurrences of u in w , we have

Mn = 1, Nn =Θ(n`), Dn =Θ(n`−1) and σn =Θ(n`−1/2),

implying asymptotic normality (assuming the variance estimates!).
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Dependency graphs An asymptotic normality criterion

Janson’s normality criterion

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <Mn

a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (Janson, 1988)

Assume that
(
Nn
Dn

)1/s Dn
σn

Mn → 0 for some integer s.
Then Xn is asymptotically normal.

In roughly the same setting (when s = 3), we also have bounds on the
speed of convergence and deviation estimates: (see Baldi, Rinott, ’89,
Rinott, ’94 and F., Méliot, Nikeghbali, ’16, ’17).
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Dependency graphs An asymptotic normality criterion

Main tool in the proof: (mixed) cumulants
Definition: mixed cumulants are multilinear functionals defined by

κr
(
X1, . . . ,Xr

)= [t1 · · ·tr ] log
(
E
[
exp

(∑r
j=1 tjXj

)])
.

Examples:

κ1(X ) :=E(X ), κ2(X ,Y ) :=Cov(X ,Y )= E(XY )−E(X )E(Y )

κ3(X ,Y ,Z ) := E(XYZ )−E(XY )E(Z )−E(XZ )E(Y )

−E(YZ )E(X )+2E(X )E(Y )E(Z ).

Notation: κ`(X ) := κ`(X , . . . ,X ).

If a set of variables can be split in two mutually independent sets, then
its mixed cumulant vanishes.

Let σn =
√
Var(Xn). If, for some s ≥ 3 and any r ≥ s, we have

κr (Xn)= o(σr
n), then Xn is asymptotically normal. (Janson, 1988)
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Dependency graphs An asymptotic normality criterion

Sketch of proof of Janson’s normality criterion

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded r.v.; |Yn,i | <Mn a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

we assume
(
Nn
Dn

)1/s Dn
σn

Mn → 0 for some s ≥ 3.

Fix r ≥ 1. Then
κr (Xn)=

∑
i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

Each summand is 0, unless the induced graph Ln[i1, · · · , ir ] is connected.

→ at most (r !)2NnD
r−1
n non-zero terms, each of which is bounded by

CrM
r
n.
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Sketch of proof of Janson’s normality criterion

Setting: for each n,
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i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

→ at most (r !)2NnD
r−1
n non-zero terms, each of which is bounded by

CrM
r
n.

|κr (Xn)| ≤Cr (r !)
2NnD

r−1
n Mr

n

= o
(
σr
n

)
(for r ≥ s, using the assumption)
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Dependency graphs Substructure counts in graphs and permutations
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Dependency graphs Substructure counts in graphs and permutations

Triangle counts in Erdős-Rényi random graphs (1/2)

Erdős-Rényi model of random graphs G (n,p):
G has n vertices labelled 1,. . . ,n;
each edge {i , j} is taken independently
with probability p;

1
2

3

4

5
6

7

8

Example : n= 8,p = 1/2

Question
Fix p ∈ (0;1). Is the number of triangles Tn asymptotically normal?

Tn =
∑

∆={i ,j ,k}⊂[n]
Y∆, where Y∆(G )=

{
1 if G contains the triangle ∆;
0 otherwise.
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Dependency graphs Substructure counts in graphs and permutations

Triangle counts in Erdős-Rényi random graphs (2/2)

Let A= {∆ ∈ ([n]
3

)
} (set of potential triangles) and

{∆1,∆2} ∈EL iff ∆1 and ∆2 share an edge in G .

Then L is a dependency graph for the family {Y∆,∆ ∈ ([n]
3

)
}.

We have (for fixed p)

Mn = 1, Nn =
(n
3
)
, Dn =O(n), while σn =Θ(n2).

(The variance estimates is easily obtained by expanding Var(
∑
Y∆).)

Janson’s assumption is fulfilled for s = 3.
⇒ Tn is asymptotically normal.
(known at least since Rucinsky, 1988)

Note: this generalizes to p = pn À n−1 and other subgraph counts, using a
more involved normality criterion.
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Dependency graphs Substructure counts in graphs and permutations

Pattern occurrences in uniform random permutations (1/3)

Definition
An occurrence of a pattern τ in σ is a subsequence σi1 . . .σik that is
order-isomorphic to τ, i.e. σis <σit ⇔ τs < τt .

Examples of occurrences of 213:

245361
82346175

Question
Fix a pattern π. What is the asymptotic behaviour of the number Xπ

n of
occurrences of π in a uniform random permutation σ of size n?

Again we write Xπ
n = ∑

I∈([n]` )
YI ,

where YI = 1
[
π occurs at the set of position I in σ

]
.
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Dependency graphs Substructure counts in graphs and permutations

Pattern occurrences in uniform random permutations (2/3)

Recall that a uniform random permutation σ can be obtained by
standardizing a sequence of i.i.d. continuous random variables
U1, . . . ,Un: i.e. σi is the rank of Ui in the set {U1, . . . ,Un}.

With this construction, YI depends only on (Ui , i ∈ I ): e.g. for π= 132,
YI = 1

[
σi1 <σi3 <σi2

]= 1
[
Ui1 <Ui3 <Ui2

]
.

Therefore the graph L with vertex set
([n]
`

)
and

I1 ∼L I2 ⇔ I1∩ I2 6= ;
is a dependency graph for the family {YI , I ∈ ([n]

`

)
}.
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Dependency graphs Substructure counts in graphs and permutations

Pattern occurrences in uniform random permutations (3/3)

Can we apply Janson’s criterion?

Mn = 1, Nn =Θ(n`), Dn =O(n`−1), σn =Θ(n`−1/2).

Janson’s criterion is fulfilled for s = 3:

−→ Xπ
n =∑

I∈([n]` )
YI is asymptotically normal

(Janson–Nakamura–Zeilberger ’15).

(the variance estimates is not trivial;
Bóna ’10, Dimitrov–Khare ’21: direct proof for the monotone/general case,
Janson–Nakamura–Zeilberger ’15: proof using U-statistics for all patterns,
Hofer ’18/F. ’19: alternative proof using the law of total variance and
extending to vincular patterns/patterns in multiset permutations,
Janson ’21: U-statistics approach to the vincular pattern case).
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Dependency graphs Lengths of nearest neighbour graphs

Transition

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion
Substructure counts in graphs and permutations
Lengths of nearest neighbour graphs

2 Weighted dependency graphs
Definition and an extended normality criterion
Back to subwords and subgraphs: Markovian texts and G (n,M)
Patterns in set-partitions
Applications in statistical physics
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Dependency graphs Lengths of nearest neighbour graphs

k-nearest neighbour graphs: the problem and its history
Consider a Poisson point process of points in the
unit square [0,1]2 of intensity n.

Fix k ≥ 1. Let G (k)
n be its k-nearest neighbour

graph: each point is connected to the k nearest
points.

Example with 20 points and k = 2:

Question

Asymptotics behaviour of the total length Xn of G (k)
n ?

Miles, ’70: E
[
Xn

]∼Ckn
1/2, for some explicit Ck .

Bickel, Breiman, ’83: for k = 1, Xn is asymptotically normal.

Avram, Bertsimas, ’93: for any k ≥ 1, Xn is asymptotically normal (and
analogue results for the length of Voronoi diagram and of Delaunay
triangulation).
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Dependency graphs Lengths of nearest neighbour graphs

k-nearest neighbours: proof of asymptotic normality (1/2)

(following Avram & Bertsimas, ’93)

Set m=
√

n
log(n) and divide the square [0,1]2 into

m2 boxes. Write

Xn =
∑

1≤i ,j≤m
Yi ,j ,

where Yi ,j is the length of the graph in box (i , j).

The number of points in each cube is Poisson(λ), where
λ := n/m2 ∼ log(n).

Lemma
With probability tending to 1, each box contains at least one point and at
most eλ points.

(We call An this event.)
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Dependency graphs Lengths of nearest neighbour graphs

k-nearest neighbours: proof of asymptotic normality (2/2)

Conditionally on An,

there is no edge in G (k)
n spanning over more than

p
k +1 boxes;

thus Yi ,j and Yi ′j ′ are independent unless ‖(i , j)− (i ′, j ′)‖1 ≤ 2
p
k +2;

we have a dependency graph of bounded degree for the family
{Yi ,j , 1≤ i , j ≤m}.

Can we apply Janson’s criterion? Nn =m2 = Õ(n), Dn =O(1),
|Yi ,j | ≤Mn with Mn =O(λm−1)= Õ(n−1/2)
(since there are at most eλ points in each box, there are at most O(λ)
edges, each of length at most O(m−1/2));
σn ≥Θ(1) (tricky argument).
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k-nearest neighbours: proof of asymptotic normality (2/2)

Conditionally on An,

there is no edge in G (k)
n spanning over more than

p
k +1 boxes;

thus Yi ,j and Yi ′j ′ are independent unless ‖(i , j)− (i ′, j ′)‖1 ≤ 2
p
k +2;

we have a dependency graph of bounded degree for the family
{Yi ,j , 1≤ i , j ≤m}.

Can we apply Janson’s criterion? Nn =m2 = Õ(n), Dn =O(1),
|Yi ,j | ≤Mn with Mn =O(λm−1)= Õ(n−1/2)
(since there are at most eλ points in each box, there are at most O(λ)
edges, each of length at most O(m−1/2));
σn ≥Θ(1) (tricky argument).

Notation: Õ is O up to logarithmic factors.
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Dependency graphs Lengths of nearest neighbour graphs

k-nearest neighbours: proof of asymptotic normality (2/2)

Conditionally on An,

there is no edge in G (k)
n spanning over more than

p
k +1 boxes;

thus Yi ,j and Yi ′j ′ are independent unless ‖(i , j)− (i ′, j ′)‖1 ≤ 2
p
k +2;

we have a dependency graph of bounded degree for the family
{Yi ,j , 1≤ i , j ≤m}.

Can we apply Janson’s criterion? Nn =m2 = Õ(n), Dn =O(1),
|Yi ,j | ≤Mn with Mn =O(λm−1)= Õ(n−1/2)
(since there are at most eλ points in each box, there are at most O(λ)
edges, each of length at most O(m−1/2));
σn ≥Θ(1) (tricky argument).

Janson’s assumption is fulfilled for s = 3. Thus Xn is asymptotically normal,
conditionally on An. Since P[An]→ 1, Xn is asymptotically normal,
unconditionally.
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Weighted dependency graphs Definition and an extended normality criterion

Transition

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion
Substructure counts in graphs and permutations
Lengths of nearest neighbour graphs

2 Weighted dependency graphs
Definition and an extended normality criterion
Back to subwords and subgraphs: Markovian texts and G (n,M)
Patterns in set-partitions
Applications in statistical physics
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Weighted dependency graphs Definition and an extended normality criterion

Motivation: models with “weak dependencies”

In many models, we do not have independence, but only weak
dependencies:

subword occurrences in a text generated by a Markovian source;
subgraph counts in Erdős-Rényi random graphs G (n,M)
(G (n,M): fixed number M of edges);
number of exceedances (i s.t. σ(i)≥ i) in a uniform random
permutation;
patterns in other combinatorial objects, such as multiset permutations,
set partitions, . . . ;
some statistical physics models, stationary distribution of symmetric
simple exclusion process and Ising model.

Goal: extend Janson’s normality criterion, to cover the above frameworks.
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Weighted dependency graphs Definition and an extended normality criterion

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0≡ no edge).

Definition (F., ’18)

Fix C = (Cr )r≥1. A weighted graph L̃ with vertex set A is a C -weighted
dependency graph for the family {Yα,α ∈A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣≤Cr M
(
L̃[α1, · · · ,αr ]

)
.
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Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0≡ no edge).

Definition (F., ’18)

Fix C = (Cr )r≥1. A weighted graph L̃ with vertex set A is a C -weighted
dependency graph for the family {Yα,α ∈A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣≤Cr M
(
L̃[α1, · · · ,αr ]

)
.

L̃[α1, · · · ,αr ]: graph induced
by L̃ on vertices α1, · · · ,αr .

M
(
K

)
: Maximum weight of a

spanning tree of K (= product
of the edge weights).

In the example,
M

(
L̃[α1, · · · ,α4]

)= ε2.

L̃
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α3 α4

α1 α2

ε2

ε3

1

ε ε
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Weighted dependency graphs Definition and an extended normality criterion

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0≡ no edge).

Definition (F., ’18)

Fix C = (Cr )r≥1. A weighted graph L̃ with vertex set A is a C -weighted
dependency graph for the family {Yα,α ∈A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣≤Cr M
(
L̃[α1, · · · ,αr ]

)
.

Intuition: the smaller the edge weights are, the smaller the cumulant
should be. The edge weights quantify the dependencies between variables.

Unlike for usual dependency graphs, proving that something is a
weighted dependency graph needs work!

This is a simplified version of the definition; some of the applications
need a more general but more technical version.
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Weighted dependency graphs Definition and an extended normality criterion

A normality criterion for weighted dependency graphs

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <M
a.s.
we have a C -weighted dependency graph L̃n with weighted maximal
degree Dn−1 (with a sequence C = (Cr )r≥1 independent of n).

we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (F., ’18)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s. Then Xn is asymptotically
normal.
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Weighted dependency graphs Definition and an extended normality criterion

Sketch of proof of the normality criterion

∣∣κr (Xn)
∣∣≤ ∑

i1,...,ir

∣∣κ(Yn,i1 , · · · ,Yn,ir )
∣∣≤Cr

∑
i1,...,ir

M
(
L̃[i1, · · · , ir ]

)

≤Cr

∑
i1,...,ir

 ∑
T spanning tree
of L̃[i1 ,··· ,ir ]

∏
(j ,k)∈ET

wij ,ik



≤Cr

∑
T spanning
tree of Kr

[ ∑
i1,...,ir

∏
(j ,k)∈ET

wij ,ik

]
.

Fix a spanning tree T of Kr (=Cayley tree). We want to bound
ΣT :=∑

i1,...,ir
∏

(j ,k)∈ET
wij ,ik . On an example:

T = 1 3

2

4

; ΣT = ∑
i1︸︷︷︸

≤Nn


∑
i3

wi1,i3︸ ︷︷ ︸

≤Dn


∑
i2

wi2,i3︸ ︷︷ ︸

≤Dn


∑
i4

wi3,i4︸ ︷︷ ︸

≤Dn





 .

In general, ΣT ≤NnD
r−1
n and∣∣κr (Xn)

∣∣≤Cr r
r−2NnD

r−1
n .
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Weighted dependency graphs Definition and an extended normality criterion

Stability by powers

Setting:
Let {Yα, α ∈A} be r.v. with C -weighted dependency graph L̃;
fix an integer m≥ 2;
for a multiset B = {α1, · · · ,αm} of elements of A, denote

YB :=Yα1 · · ·Yαm .

Proposition

The set of r.v. {YB } has a C (m)-weighted dependency graph L̃m, where

wtL̃m(YB ,YB ′)= max
α∈B ,α′∈B ′

wtL̃(Yα,Yα′),

where C (m) depends only on C and m.

Convention: wtL̃(Yα,Yα)= 1.
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Stability by powers

Setting:
Let {Yα, α ∈A} be r.v. with C -weighted dependency graph L̃;
fix an integer m≥ 2;
for a multiset B = {α1, · · · ,αm} of elements of A, denote

YB :=Yα1 · · ·Yαm .

Proposition

The set of r.v. {YB } has a C (m)-weighted dependency graph L̃m, where

wtL̃m(YB ,YB ′)= max
α∈B ,α′∈B ′

wtL̃(Yα,Yα′),

where C (m) depends only on C and m.

In short: if we have a wieght dependency graph for {Yα}, we have also one
for monomials in the Yα.
(And potentially asymptotic normality of polynomials in the Yα).
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Weighted dependency graphs Back to subwords and subgraphs

Transition

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion
Substructure counts in graphs and permutations
Lengths of nearest neighbour graphs

2 Weighted dependency graphs
Definition and an extended normality criterion
Back to subwords and subgraphs: Markovian texts and G (n,M)
Patterns in set-partitions
Applications in statistical physics
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Weighted dependency graphs Back to subwords and subgraphs

A weighted dependency graph for Markov chain

Setting:
Let (wi )i≥1 be an irreducible aperiodic Markov chain on a finite space
state A ;
Assume w1 is distributed with the stationary distribution π;
Set Zi ,s = 1wi=s .

Proposition

We have a weighted dependency graph L̃ with wtL̃
(
{Zi ,s ,Zj ,t }

)= |λ2|j−i (for
i < j), where λ2 is the second eigenvalue of the transition matrix.
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A weighted dependency graph for Markov chain

Setting:
Let (wi )i≥1 be an irreducible aperiodic Markov chain on a finite space
state A ;
Assume w1 is distributed with the stationary distribution π;
Set Zi ,s = 1wi=s .

Proposition

We have a weighted dependency graph L̃ with wtL̃
(
{Zi ,s ,Zj ,t }

)= |λ2|j−i (for
i < j), where λ2 is the second eigenvalue of the transition matrix.

Concretely, this means that, for i1 < ·· · < ir ,∣∣κ(Zi1,s1 , . . . ,Zir ,sr )
∣∣≤Cr |λ2|ir−i1 .

This was proved by Saulis and Statulevičius (’90).
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Weighted dependency graphs Back to subwords and subgraphs

A weighted dependency graph for Markov chain

Setting:
Let (wi )i≥1 be an irreducible aperiodic Markov chain on a finite space
state A ;
Assume w1 is distributed with the stationary distribution π;
Set Zi ,s = 1wi=s .

Proposition

We have a weighted dependency graph L̃ with wtL̃
(
{Zi ,s ,Zj ,t }

)= |λ2|j−i (for
i < j), where λ2 is the second eigenvalue of the transition matrix.

Corollary (using the stability by product)
We have a weighted dependency graph L̃m for monomials
ZI ;S :=Zi1,s1 · · · Zim,sm , with wtL̃m(ZI ;S ,ZI ,T )= |λ2|md(I ,J),
where md(I ,J) is the minimal distance between I and J.
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Weighted dependency graphs Back to subwords and subgraphs

Subword occurrences in Markovian text (1/2)

Let (wi )i≥1 be a Markov chain as before and fix a pattern (= a word) u of
length ` on A .

For I = {i1, · · · , i`} ⊂N (i1 < ·· · < i`), we set

YI = 1
[
u occurs at position I in w

]
;

=Zi1,u1 · · ·Zis ,us .

We have a weighted dependency graph for
(
YI , I ∈ ([n]

`

))
, which is a

restriction of the one for the ZI ,S .

What is its maximal weighted degree Dn? Fix I = {i1, · · · , i`}, we have∑
J

|λ2|md(I ,J) ≤∑
J

∑
s ,t≤`

|λ2||is−jt | ≤ `2 ∑
J

|λ2||i1−j1|

≤ `2

(
n−1
`−1

)∑
j1

|λ2||i1−j1| =O(n`−1).
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Weighted dependency graphs Back to subwords and subgraphs

Subword occurrences in Markovian text (2/2)

Let Xn =∑
I YI be the number of occurrences of u in a Markovian text w .

Recall that
(
YI , I ∈ ([n]

`

))
admits a weighted dependency graph.

Can we apply the normality criterion?

M = 1, Nn =
(n
`

)
, Dn =O(n`−1) and

σn =
√
Var(Xn)= (C +o(1))n`−1/2, for a computable constant C ≥ 0

(Bourdon, Vallée, ’01).

→ when C > 0, the normality criterion satisfied for s = 3.

Conclusion: when C > 0, the number Xn of occurrences of u in a
Markovian text w is asymptotically normal.

(Answers partially a question of Bourdon–Vallée, ’01).
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Weighted dependency graphs Back to subwords and subgraphs

Erdős-Rényi graph model G (n,M)

Subgraph count G (n,M)

G has n vertices labelled 1,. . . ,n;
The edge-set of G is taken uniformly
among all possible edge-sets of cardinality
M.

Example with n= 8 and M = 14:

1
2

3

4

5
6

7

8

If p =M/
(n
2
)
, each edge appears with probability p, but no independence

any more!
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Weighted dependency graphs Back to subwords and subgraphs

Weighted dependency graphs for G (n,M)

Consider G ∼G (n,M) with M = p
(n
2
)
, p fixed in (0,1).

Let A2 =
([n]

2

)
and for e ∈A2, let 1[e] be the edge indicator variable.

Proposition
The complete graph on A2 with weights 1/n2 is a C -weighted dependency
graph for {1[e],e ∈A2}, for some fixed sequence C = (Cr )r≥1.

Concretely, this means∣∣κ(1[e1], . . . ,1[er ])
∣∣≤Crn

−2d+2,

where d is the number of distinct edges in {e1, . . . ,er }.

General fact: for Bernoulli variables, it is enough to establish the bounds on
cumulants of distinct variables.
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The complete graph on A2 with weights 1/n2 is a C -weighted dependency
graph for {1[e],e ∈A2}, for some fixed sequence C = (Cr )r≥1.

Concretely, this means∣∣κ(1[e1], . . . ,1[er ])
∣∣≤Crn

−2d+2,

where d is the number of distinct edges in {e1, . . . ,er }.

General fact: for Bernoulli variables, it is enough to establish the bounds on
cumulants of distinct variables.
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Weighted dependency graphs for G (n,M)

Consider G ∼G (n,M) with M = p
(n
2
)
, p fixed in (0,1).

Let A2 =
([n]

2

)
and for e ∈A2, let 1[e] be the edge indicator variable.

Proposition
The complete graph on A2 with weights 1/n2 is a C -weighted dependency
graph for {1[e],e ∈A2}, for some fixed sequence C = (Cr )r≥1.

What needs to be proved (set N = (n
2
)
):

∑
π set-partition of [r ]

(−1)|π|−1(|π|−1)!

( ∏
B∈π

(
N −|B |
M −|B |

)/(
N

M

))
=O(n−2r+2).

(all terms on the LHS have degree 0 in N and M; showing that the sum
has degree at most −1 is easy, that it has degree −r +1 not so much.)
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Weighted dependency graphs for G (n,M)

Consider G ∼G (n,M) with M = p
(n
2
)
, p fixed in (0,1).

Let A2 =
([n]

2

)
and for e ∈A2, let 1[e] be the edge indicator variable.

Proposition
The complete graph on A2 with weights 1/n2 is a C -weighted dependency
graph for {1[e],e ∈A2}, for some fixed sequence C = (Cr )r≥1.

Corollary

The complete graph on A3 = {∆ ∈ ([n]
3

)
} with weights

wtL̃({∆1,∆2})=
{
1 if ∆1 and ∆2 share an edge;
1/n2 otherwise,

is a weighted dependency graph for the triangle indicator variables.
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Weighted dependency graphs Back to subwords and subgraphs

Asymptotic normality of the number of triangles in G (n,M)

Corollary (copied from previous slide)

The complete graph on A3 = {∆ ∈ ([n]
3

)
} with weights

wtL̃({∆1,∆2})=
{
1 if ∆1 and ∆2 share an edge;
1/n2 otherwise,

is a weighted dependency graph for the triangle indicator variables.

Can we apply the normality criterion?

Nn =
(n
3
)
, Dn = n.

One can estimate the variance as Θ(n3) (smaller than for G (n,p)!).

The criterion is fulfilled for s = 5, thus Tn is asymptotically normal.

This can be generalized to p = pn À 1/n and to other subgraph counts
(recovers a result of Janson, ’94).
similar bounds on cumulants can be found in G (n,d) (random regular
graph), see Janson ’20.
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Weighted dependency graphs Patterns in set-partitions

Transition

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion
Substructure counts in graphs and permutations
Lengths of nearest neighbour graphs

2 Weighted dependency graphs
Definition and an extended normality criterion
Back to subwords and subgraphs: Markovian texts and G (n,M)
Patterns in set-partitions
Applications in statistical physics
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Weighted dependency graphs Patterns in set-partitions

Stam’s algortihm for generating set-partitions

How to generate a uniform random a set-partition of [n]?

Take M at random with distribution: P(M =m)= 1
eBn

mn

m!
(Bn: Bell number) and consider M urns.
Note: M concentrates around n/logn.

Drop numbers from 1 to n independently uniformly in the urns.

Forget empty urns and the order on the urns, you get a set-partition:
in the example, {1,3,4}, {2,5}.

M = 3

Proposition (Stam, ’83)

The resulting set partition π of [n] is uniformly distributed. Moreover, the
number of empty urns is Poisson(1)-distributed and independent from π.
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Weighted dependency graphs Patterns in set-partitions

Patterns in set-partitions

We think at partitions as arch systems, e.g. {1,3,4}, {2,5} is

1 2 3 4 5

Definition
An occurrence of a set-partition A of size ` in another set-partition π is a
list (i1, . . . , i`) s.t. (ij , ik) is an arch of π whenever (j ,k) is an arch of A .

Example: an occurrence of {1,3,4}, {2,5}

i1 = 2 i2 = 3 i3 = 7 i4 = 8 i5 = 10

encapsulates contraints on the ij ’s, but also on intermediate points (in
the example, i1 and i3 should be in the same part, but none of the points
inbetween).
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Weighted dependency graphs Patterns in set-partitions

Patterns in set-partitions

We think at partitions as arch systems, e.g. {1,3,4}, {2,5} is

1 2 3 4 5

Definition
An occurrence of a set-partition A of size ` in another set-partition π is a
list (i1, . . . , i`) s.t. (ij , ik) is an arch of π whenever (j ,k) is an arch of A .

Background:
standard well-studied examples: crossings, nestings, k-crossings,
k-nestings;
the general notion was defined (in even more generality) by Chern,
Diaconis, Kane, Rhodes, ’14;
the same authors proved the asymptotic normality of the number of
crossings (’15).
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Weighted dependency graphs Patterns in set-partitions

A weighted dependency graph for set-partitions

Let π be a uniform random set-partition of size n and 1[Øij ] be the indicator
variable of the arc {i , j} (1≤ i < j ≤ n).

Proposition
The complete graph with weights

w
(
1[Øij ],1[ Øi ′j ′ ])={

1 if i = i ′ or j = j ′;
1/n otherwise.

is a (C ,Ψ)-weighted dependency graph for the family
{
1[Øij ], i < j

}
, for some

C = (Cr )r≥1 depending on n with Cr = Õ(1) and some Ψ.

Here, we need the general definition of weighted dependency graph, which
involves some function Ψ as parameter.
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A weighted dependency graph for set-partitions

Let π be a uniform random set-partition of size n and 1[Øij ] be the indicator
variable of the arc {i , j} (1≤ i < j ≤ n).

Proposition
The complete graph with weights

w
(
1[Øij ],1[ Øi ′j ′ ])={

1 if i = i ′ or j = j ′;
1/n otherwise.

is a (C ,Ψ)-weighted dependency graph for the family
{
1[Øij ], i < j

}
, for some

C = (Cr )r≥1 depending on n with Cr = Õ(1) and some Ψ.

It is enough to prove that for distinct i1, . . . , ir and distinct j1, . . . , jr

κ
(
1[Ùi1j1 ], . . . ,1[ Øir jr ])= Õ(n−2r+1)

Elements of proof: use Stam’s urn model, first control cumulants
conditionally on M, and then use the law of total cumulance.
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Weighted dependency graphs Patterns in set-partitions

Asymptotic normality of patterns in set partition

Using the stability by product of weighted-dependency graphs, we get:

Proposition (F., ’19)

Fix a pattern A . Let 1[πI =A ] be the indicator of having the pattern A

at position I . This family has a (C ,Ψ)-weighted dependency graph with

weights w
(
1[πI =A ],1[πI ′ =A ]

)={
1 if I ∩ I ′ 6= ;;
1/n otherwise.

Using a generalization of the above normality criterion, we get

Corollary (F., ’19)

For any pattern A , the number XA
n of occurrences of A in a uniform

random set-partition π of [n] is asymptotically normal.
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Weighted dependency graphs Applications in statistical physics

Transition

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion
Substructure counts in graphs and permutations
Lengths of nearest neighbour graphs

2 Weighted dependency graphs
Definition and an extended normality criterion
Back to subwords and subgraphs: Markovian texts and G (n,M)
Patterns in set-partitions
Applications in statistical physics
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Weighted dependency graphs Applications in statistical physics

Symmetric simple exclusion process (SSEP)
1 1 1

1111

α β

γ δ
τ= (τ1, · · · ,τN) particle configuration with stationary distribution.

Theorem
The complete graph on [N] with weight 1/N on each edge is a weighted
dependency graph for the family {τi ,1≤ i ≤N}.
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Symmetric simple exclusion process (SSEP)
1 1 1

1111

α β

γ δ
τ= (τ1, · · · ,τN) particle configuration with stationary distribution.

Theorem
The complete graph on [N] with weight 1/N on each edge is a weighted
dependency graph for the family {τi ,1≤ i ≤N}.

Concretely, for i1, · · · , ir ,

κ(τi1 , . . . ,τir )=Or (N
−d+1),

where d = |{i1, . . . , ir }|.
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Weighted dependency graphs Applications in statistical physics

Symmetric simple exclusion process (SSEP)
1 1 1

1111

α β

γ δ
τ= (τ1, · · · ,τN) particle configuration with stationary distribution.

Theorem
The complete graph on [N] with weight 1/N on each edge is a weighted
dependency graph for the family {τi ,1≤ i ≤N}.

Ingredients of the proof
enough to prove the bound for distinct i1, . . . ,ir ;
joint moments of the τi given by matrix ansatz;
this gives an induction formula for cumulants (Derrida, Lebowitz,
Speer, 2006), from which we deduce easily the upper bound.

V. Féray (CNRS, IECL) Normality and dependency graphs Rouen, 2021–10 41 / 45



Weighted dependency graphs Applications in statistical physics

A functional central limit theorem

Set XN(t)=
∑Nt

i=1τi be the particle distribution function.

Theorem (F., ’18)

There exists a continuous Gaussian process Z on [0,1] with explicit
covariance function such that, in the space D([0,1]),

X̃N(t) :=
XN(t)−EXN(t)p

N

d→Z

Essentially similar to a result of Derrida–Enaud–Landim–Olla ’05 on the
fluctuations of the density of particles.

Any interest in asymptotic normality of higher order polynomials in the τi?
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A functional central limit theorem

Set XN(t)=
∑Nt

i=1τi be the particle distribution function.

Theorem (F., ’18)

There exists a continuous Gaussian process Z on [0,1] with explicit
covariance function such that, in the space D([0,1]),

X̃N(t) :=
XN(t)−EXN(t)p

N

d→Z

Derrida et al.’s result holds more generally for ASEP (A=asymmetric, i.e.
particles jump backwards at rate q instead of 1).

Question
Is the same weighted graph also a weighted dependency graphs for particles
in ASEP? Or should we use weights 1/|i − j |?
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Ising model

+ − − + + − +
− − − + + − −
+ + − + − + −
− − + − + − −
+ + + − − − +

P(ω) ∝ exp
[−H(ω)

]
;

H(ω) =−β∑
x∼y ωxωy −h

∑
x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε= ε(d ,h,β)> 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x ,y } is a weighted dependency graph for
{σx ,x ∈Zd }
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Ising model

+ − − + + − +
− − − + + − −
+ + − + − + −
− − + − + − −
+ + + − − − +

P(ω) ∝ exp
[−H(ω)

]
;

H(ω) =−β∑
x∼y ωxωy −h

∑
x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε= ε(d ,h,β)> 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x ,y } is a weighted dependency graph for
{σx ,x ∈Zd }

Concretely, this means that

κ(σx1 , . . . ,σxr )=Or (ε
`T (x1,...,xr )),

where `T (x1, . . . ,xr ) is the smallest length of a tree connecting x1, . . . ,xr .
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Ising model

+ − − + + − +
− − − + + − −
+ + − + − + −
− − + − + − −
+ + + − − − +

P(ω) ∝ exp
[−H(ω)

]
;

H(ω) =−β∑
x∼y ωxωy −h

∑
x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε= ε(d ,h,β)> 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x ,y } is a weighted dependency graph for
{σx ,x ∈Zd }

This was proved by Duneau, Iagolnitzer and Souillard (’74) (with magnetic
field or in very high temperature) and Malyshev and Minlos (’91) in very
low temperature.
Proofs based on cluster expansion. . .
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Ising model

+ − − + + − +
− − − + + − −
+ + − + − + −
− − + − + − −
+ + + − − − +

P(ω) ∝ exp
[−H(ω)

]
;

H(ω) =−β∑
x∼y ωxωy −h

∑
x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε= ε(d ,h,β)> 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x ,y } is a weighted dependency graph for
{σx ,x ∈Zd }

Question: does it hold near the critical point?
(At the critical point, the answer is NO, since already covariances do not
decay exponentially)
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Ising model: asymptotic normality of global patterns

+ − − + + − +
− − − + + ⊕ −
+ + − ⊕ − + −
− − + − + − −
+ + ⊕ − − − +

Circled spins:
South-East chain of +

Sn := number of south-East chains of ⊕ within Λn = [−n,n]2.

Theorem (Dousse, F., ’19)

Sn is asymptotically normal.

(generalizes to more “pattern” counts and any dimension.)
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Conclusion

Dependency graphs are a powerful simple tool to prove asymptotic
normality, particularly for substructure counts in models exhibiting
some independence;

We proposed an extension to handle models without independence,
but with weak dependencies.

Plenty of applications (both for the initial framework and for the
extended one)!

Thank you for your attention!
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