On random combinatorial structures: partitions, permutations and asymptotic normality

Valentin Féray

Habilitation à diriger les recherches

CNRS, Université de Lorraine

Nancy, 21 septembre 2021

My research field(s)

- Algebraic combinatorics: symmetric group representations, symmetric functions, ... with a bias towards formulas suited for asymptotic analysis.
- Probabilistic combinatorics: random partitions (integer and set partitions), permutations, and graphs.

My research field(s)

- Algebraic combinatorics: symmetric group representations, symmetric functions, ... with a bias towards formulas suited for asymptotic analysis.
- Probabilistic combinatorics: random partitions (integer and set partitions), permutations, and graphs.

In my habiliation thesis:
(1) Algebraic models of random partitions;
(2) Weighted dependency graphs;
(3) Universal limits for random pattern-avoiding permutations.

Part 1

Algebraic models of random partitions
(co-authors: M. Dołęga, P.-L. Méliot)

Partitions

Definition

An integer partition (or partition for short) is a non-increasing list $\lambda=\left(\lambda_{1}, \cdots, \lambda_{\ell}\right)$ of positive integers. Its size is $|\lambda|:=\lambda_{1}+\cdots+\lambda_{\ell}$.

It is customary to represent a partition $\lambda=\left(\lambda_{1}, \ldots \lambda_{\ell}\right)$ by a Young diagram:

$(7,4,3,3,2)$

Plancherel measure

A Young tableaux of shape λ is a filling of λ with numbers from 1 to n with increasing rows and columns.

7	12			
4	9	10	15	
2	5	8	14	
1	3	6	11	

Plancherel measure

A Young tableaux of shape λ is a filling of λ with numbers from 1 to n with increasing rows and columns.

Let $\operatorname{dim}(\lambda)$ be the number of Young tableaux of shape λ. It is the dimension of the irreducible representation of S_{n} associated with λ.

7	12			
4	9	10	15	
2	5	8	14	
1	3	6	11	

Plancherel measure

A Young tableaux of shape λ is a filling of λ with numbers from 1 to n with increasing rows and columns.

Let $\operatorname{dim}(\lambda)$ be the number of Young tableaux of shape λ. It is the dimension of the irreducible rep-

7	12			
4	9	10	15	
2	5	8	14	
1	3	6	11	

Definition

The Plancherel measure for Sym $_{n}$ (or Plancherel measure for short) is the probability measure \mathbb{P}_{PI} on the set of partitions of n such that for any partition λ of n, we have

$$
\mathbb{P}_{\mathrm{PI}}(\lambda)=\frac{1}{n!}(\operatorname{dim}(\lambda))^{2} .
$$

Well studied since the '60es/'70es (Ulam, Hammersley, Vershik-Kerov, Logan-Shepp, Baik-Deift-Johansson, Borodin-Okounkov-Olshanski, ...)

Limit results

Theorem (Logan-Shepp '77/Kerov-Vershik '77)
For each $n \geq 1$, let $\boldsymbol{\lambda}^{n}$ be a random Young diagram of size n, distributed with Plancherel measure. Then, after rescaling in both directions to have area $1, \boldsymbol{\lambda}^{n}$ converges to an explicit limit shape Ω.

A central limit theorem for functionals $F\left(\boldsymbol{\lambda}^{n}\right)$ was given later by Kerov ('93).

Limit results - an illustration

(C) Notices of the AMS, Feb. 2011, front cover.

Two generalizations of Plancherel measure

- q-Plancherel measure linked to Hecke algebras (Kerov '92, Strahov '08)

Simulation for $q=1 / 2$ (and $n=200)$

- α-Plancherel measure linked to Jack polynomials (Kerov '00, Fulman '04, ...)

Simulation for $\alpha=1 / 3$ (and $n=500$)

Limit results

Theorem (F. - Méliot '12)
Fix $q<1$ and let $\boldsymbol{\lambda}^{n}$ be a random Young diagram of size n, distributed with q-Plancherel measure. Then, for each $i \geq 1$, the quantity λ_{i}^{n} / n (renormalized length of the i-th row of $\boldsymbol{\lambda}^{n}$) converges in probability to $(1-q) q^{i-1}$.

Theorem (Dołęga - F. '16)
Fix $\alpha>0$, and let $\boldsymbol{\lambda}^{n}$ be a random Young diagram of size n, distributed with α-Plancherel measure. Then, after rescaling rows by a factor $\sqrt{\alpha n}$ and columns by $\sqrt{\frac{n}{\alpha}}$, the diagram $\boldsymbol{\lambda}^{n}$ converges to the same limit shape Ω as for $\alpha=1$.

We also have central limit theorems for functionals $F\left(\boldsymbol{\lambda}^{n}\right)$ in both cases.

Proof strategy (following Kerov '93, Ivanov-Olshanski '03)

(1) We consider character values of the symmetric group:

$$
\bar{\chi}_{\sigma}(\lambda):=\frac{\operatorname{Tr}\left[\rho^{\lambda}(\sigma)\right]}{\operatorname{dim}(\lambda)}
$$

Easy lemma: $\mathbb{E}\left[\bar{\chi}_{\sigma}\right]=0$ unless $\sigma=$ id.
With some work (to compute higher moments), one can find the asymptotic behaviour of $\bar{\chi}_{\sigma}$.

Proof strategy (following Kerov '93, Ivanov-Olshanski '03)

(1) We consider character values of the symmetric group:

$$
\bar{\chi}_{\sigma}(\lambda):=\frac{\operatorname{Tr}\left[\rho^{\lambda}(\sigma)\right]}{\operatorname{dim}(\lambda)}
$$

Easy lemma: $\mathbb{E}\left[\bar{\chi}_{\sigma}\right]=0$ unless $\sigma=$ id.
With some work (to compute higher moments), one can find the asymptotic behaviour of $\bar{\chi}_{\sigma}$.
(2) Express the "shape" of Young diagrams in terms of characters, e.g. for all k, the function $\lambda \mapsto \Sigma\left(\lambda_{i}-i\right)^{k}$ is a linear combination of characters. One can find its asymptotics using 1 .

Proof strategy (following Kerov '93, Ivanov-Olshanski '03)

(1) We consider character values of the symmetric group:

$$
\bar{\chi}_{\sigma}(\lambda):=\frac{\operatorname{Tr}\left[\rho^{\lambda}(\sigma)\right]}{\operatorname{dim}(\lambda)}
$$

Easy lemma: $\mathbb{E}\left[\bar{\chi}_{\sigma}\right]=0$ unless $\sigma=$ id.
With some work (to compute higher moments), one can find the asymptotic behaviour of $\bar{\chi}_{\sigma}$.
(2) Express the "shape" of Young diagrams in terms of characters, e.g. for all k, the function $\lambda \mapsto \sum\left(\lambda_{i}-i\right)^{k}$ is a linear combination of characters. One can find its asymptotics using 1.

We extended this strategy to q / α-Plancherel measure.
Difficulties: manipulate the analogues of characters in step 1, find the good functionals of the shape for step $2, \ldots$ Needed new ideas (e.g. multivariate Stein's method)

Proof strategy (following Kerov '93, Ivanov-Olshanski '03)

(1) We consider character values of the symmetric group:

$$
\bar{\chi}_{\sigma}(\lambda):=\frac{\operatorname{Tr}\left[\rho^{\lambda}(\sigma)\right]}{\operatorname{dim}(\lambda)}
$$

Easy lemma: $\mathbb{E}\left[\bar{\chi}_{\sigma}\right]=0$ unless $\sigma=$ id.
With some work (to compute higher moments), one can find the asymptotic behaviour of $\bar{\chi}_{\sigma}$.
(2) Express the "shape" of Young diagrams in terms of characters, e.g. for all k, the function $\lambda \mapsto \Sigma\left(\lambda_{i}-i\right)^{k}$ is a linear combination of characters. One can find its asymptotics using 1.

We extended this strategy to q / α-Plancherel measure.
Difficulties: manipulate the analogues of characters in step 1, find the good functionals of the shape for step $2, \ldots$ Needed new ideas (e.g. multivariate Stein's method)

Motto: algebra gives tractable probabilistic models.

Part 2
 Weighted dependency graphs

(co-authors: J. Dousse, P.-L. Méliot, A. Nikeghbali)

Context

Consider some sequence of random variables X_{n}, typically the number of substructures of a given type in a random object.

- number of triangles in random graphs;
- number of exceedances (i s.t. $\sigma(i) \geq i$) in permutations;

Context

Consider some sequence of random variables X_{n}, typically the number of substructures of a given type in a random object.

Goal: prove that X_{n} is asymptotically normal, i.e., as $n \rightarrow+\infty$

$$
\frac{X_{n}-\mathbb{E}\left[X_{n}\right]}{\sqrt{\operatorname{Var}\left(X_{n}\right)}} \xrightarrow{d} \mathscr{N}(0,1) .
$$

Main methods:

- analytic method: Flajolet, Sedgewick, Hwang, ...
- moment/cumulant method: Janson, Mikhailov, ...
- Stein's method: Stein, Chen, Barbour, ...

Context

Consider some sequence of random variables X_{n}, typically the number of substructures of a given type in a random object.

Goal: prove that X_{n} is asymptotically normal, i.e., as $n \rightarrow+\infty$

$$
\frac{X_{n}-\mathbb{E}\left[X_{n}\right]}{\sqrt{\operatorname{Var}\left(X_{n}\right)}} \xrightarrow{d} \mathscr{N}(0,1) .
$$

Main methods:

- analytic method: Flajolet, Sedgewick, Hwang, ...
- moment/cumulant method: Janson, Mikhailov, ...
- Stein's method: Stein, Chen, Barbour, ...

We will present (weighted) dependency graphs, which are based on the moment method.

Dependency graphs

Definition (Malyshev, '80, Petrovskaya/Leontovich, '82, Janson, '88)
A graph L with vertex set A is a dependency graph for the family $\left\{Y_{\alpha}, \alpha \in A\right\}$ if the following holds for any $A_{1}, A_{2} \subset A$:
there is no edge between A_{1} and A_{2}
$\left\{Y_{\alpha}, \alpha \in A_{1}\right\}$ and $\left\{Y_{\alpha}, \alpha \in A_{2}\right\}$ are independent

Dependency graphs

Definition (Malyshev, '80, Petrovskaya/Leontovich, '82, Janson, '88)
A graph L with vertex set A is a dependency graph for the family $\left\{Y_{\alpha}, \alpha \in A\right\}$ if the following holds for any $A_{1}, A_{2} \subset A$:
there is no edge

between A_{1} and $A_{2}$$\Longrightarrow$| $\left\{Y_{\alpha}, \alpha \in A_{1}\right\}$ and $\left\{Y_{\alpha}, \alpha \in A_{2}\right\}$ |
| :---: |
| are independent |

Example
 L is a dependency graph for $\left\{Y_{1}, \ldots, Y_{7}\right\}$
 \Downarrow

Y_{1} is independent from Y_{4}, Y_{5}, Y_{6} and Y_{7} $\left\{Y_{1}, Y_{2}\right\}$ and $\left\{Y_{4}, Y_{6}, Y_{7}\right\}$ are independent

Triangles in Erdős-Rényi random graphs

Erdös-Rényi model of random graphs $G(n, p)$:

- G has n vertices labelled $1, \ldots, n$;
- each pair $\{i, j\}$ is an edge of G with probability p, and these events are independent from each other.

Triangles in Erdős-Rényi random graphs

Erdös-Rényi model of random graphs $G(n, p)$:

- G has n vertices labelled $1, \ldots, n$;
- each pair $\{i, j\}$ is an edge of G with probability p, and these events are independent from each other.

Example of dependency graph
We set $Y_{\{i, j, k\}}=1$ if G contains the triangle $\{i, j, k\}$ and 0 otherwise. Two Y variables are independent unless the corresponding triangles share an edge. We can encode this in a dependency graph L_{n} where $\{i, j, k\}$ is linked to $\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}$ if they have 2 elements (i.e. vertices) in common.

Triangles in Erdős-Rényi random graphs

Erdös-Rényi model of random graphs $G(n, p)$:

- G has n vertices labelled $1, \ldots, n$;
- each pair $\{i, j\}$ is an edge of G with probability p, and these events are independent from each other.

Example of dependency graph
We set $Y_{\{i, j, k\}}=1$ if G contains the triangle $\{i, j, k\}$ and 0 otherwise. Two Y variables are independent unless the corresponding triangles share an edge. We can encode this in a dependency graph L_{n} where $\{i, j, k\}$ is linked to $\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}$ if they have 2 elements (i.e. vertices) in common.

Claim: L_{n} is regular with degree $3(n-3)$.

Janson's normality criterion

Setting: for each n,

- let $\left\{Y_{n, i}, 1 \leq i \leq N_{n}\right\}$ be unif. bounded random variables; $\left|Y_{n, i}\right|<M$ a.s.
- we have a dependency graph L_{n} with maximal degree $D_{n}-1$.
- we set $X_{n}=\sum_{i=1}^{N_{n}} Y_{n, i}$ and $\sigma_{n}^{2}=\operatorname{Var}\left(X_{n}\right)$.

Janson's normality criterion

Setting: for each n,

- let $\left\{Y_{n, i}, 1 \leq i \leq N_{n}\right\}$ be unif. bounded random variables; $\left|Y_{n, i}\right|<M$ a.s.
- we have a dependency graph L_{n} with maximal degree $D_{n}-1$.
- we set $X_{n}=\sum_{i=1}^{N_{n}} Y_{n, i}$ and $\sigma_{n}^{2}=\operatorname{Var}\left(X_{n}\right)$.

Theorem (Janson, 1988)
Assume that $\left(\frac{N_{n}}{D_{n}}\right)^{1 / s} \frac{D_{n}}{\sigma_{n}} \rightarrow 0$ for some integer s.
Then X_{n} is asymptotically normal.

Janson's normality criterion

Setting: for each n,

- let $\left\{Y_{n, i}, 1 \leq i \leq N_{n}\right\}$ be unif. bounded random variables; $\left|Y_{n, i}\right|<M$ a.s.
- we have a dependency graph L_{n} with maximal degree $D_{n}-1$.
- we set $X_{n}=\sum_{i=1}^{N_{n}} Y_{n, i}$ and $\sigma_{n}^{2}=\operatorname{Var}\left(X_{n}\right)$.

Theorem (Janson, 1988)
Assume that $\left(\frac{N_{n}}{D_{n}}\right)^{1 / s} \frac{D_{n}}{\sigma_{n}} \rightarrow 0$ for some integer s.
Then X_{n} is asymptotically normal.

Example: For triangles in $G(n, p)$

$$
N_{n}=\Theta\left(n^{3}\right), D_{n}=\Theta(n) \text { and } \sigma_{n}=\Theta\left(n^{2}\right),
$$

so that asymptotic normality of the number of triangles follows.

Models with "weak dependencies"

In many models, we do not have independence, but only weak dependencies:
(1) subword occurrences in a text generated by a Markovian source;
(2) subgraph counts in random graphs with fixed number of edges;
(3) number of exceedances (i s.t. $\sigma(i) \geq i$) in a uniform random permutation;
(9) patterns in multiset permutations and set partitions, ...;
(6) spins or patterns of spins in Ising model.

Models with "weak dependencies"

In many models, we do not have independence, but only weak dependencies:
(1) subword occurrences in a text generated by a Markovian source;
(2) subgraph counts in random graphs with fixed number of edges;
(3) number of exceedances (i s.t. $\sigma(i) \geq i$) in a uniform random permutation;
(4) patterns in multiset permutations and set partitions, ...;
(3) spins or patterns of spins in Ising model.

What I did: extend the notion of dependency graphs and Janson's normality criterion, to cover the above frameworks.

Models with "weak dependencies"

In many models, we do not have independence, but only weak dependencies:
(1) subword occurrences in a text generated by a Markovian source;
(3) subgraph counts in random graphs with fixed number of edges;
(0) number of exceedances (i s.t. $\sigma(i) \geq i$) in a uniform random permutation;
© patterns in multiset permutations and set partitions, ...;

- spins or patterns of spins in Ising model.

What I did: extend the notion of dependency graphs and Janson's normality criterion, to cover the above frameworks.

Note: existing theories, such as mixing, work well for models with a spatial structure (1 and 5 in the list); some specific approaches have been developed for 2 and 3 .

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in $[0,1]$ on each edge (weight $0 \equiv$ no edge).

Definition (F., '18)
Fix $\boldsymbol{C}=\left(C_{r}\right)_{r \geq 1}$. A weighted graph \widetilde{L} with vertex set A is a C-weighted dependency graph for the family $\left\{Y_{\alpha}, \alpha \in A\right\}$ if, for any $\alpha_{1}, \ldots, \alpha_{r}$ in A,

$$
\left|\kappa\left(Y_{\alpha_{1}}, \cdots, Y_{\alpha_{r}}\right)\right| \leq C_{r} \mathscr{M}\left(\widetilde{L}\left[\alpha_{1}, \cdots, \alpha_{r}\right]\right) .
$$

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in $[0,1]$ on each edge (weight $0 \equiv$ no edge).

Definition (F., '18)
Fix $\boldsymbol{C}=\left(C_{r}\right)_{r \geq 1}$. A weighted graph \widetilde{L} with vertex set A is a C-weighted dependency graph for the family $\left\{Y_{\alpha}, \alpha \in A\right\}$ if, for any $\alpha_{1}, \ldots, \alpha_{r}$ in A,

$$
\left|\kappa\left(Y_{\alpha_{1}}, \cdots, Y_{\alpha_{r}}\right)\right| \leq C_{r} \mathscr{M}\left(\widetilde{L}\left[\alpha_{1}, \cdots, \alpha_{r}\right]\right) .
$$

$\kappa\left(Y_{\alpha_{1}}, \cdots, Y_{\alpha_{r}}\right)$: mixed cumulants

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in $[0,1]$ on each edge (weight $0 \equiv$ no edge).

Definition (F., '18)
Fix $\boldsymbol{C}=\left(C_{r}\right)_{r \geq 1}$. A weighted graph \widetilde{L} with vertex set A is a C-weighted dependency graph for the family $\left\{Y_{\alpha}, \alpha \in A\right\}$ if, for any $\alpha_{1}, \ldots, \alpha_{r}$ in A,

$$
\left|\kappa\left(Y_{\alpha_{1}}, \cdots, Y_{\alpha_{r}}\right)\right| \leq C_{r} \mathscr{M}\left(\widetilde{L}\left[\alpha_{1}, \cdots, \alpha_{r}\right]\right) .
$$

$\kappa\left(Y_{\alpha_{1}}, \cdots, Y_{\alpha_{r}}\right)$: mixed cumulants $\widetilde{L}\left[\alpha_{1}, \cdots, \alpha_{r}\right]$: graph induced by \tilde{L} on vertices $\alpha_{1}, \cdots, \alpha_{r}$.

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in $[0,1]$ on each edge (weight $0 \equiv$ no edge).

Definition (F., '18)
Fix $\boldsymbol{C}=\left(C_{r}\right)_{r \geq 1}$. A weighted graph \widetilde{L} with vertex set A is a C-weighted dependency graph for the family $\left\{Y_{\alpha}, \alpha \in A\right\}$ if, for any $\alpha_{1}, \ldots, \alpha_{r}$ in A,

$$
\left|\kappa\left(Y_{\alpha_{1}}, \cdots, Y_{\alpha_{r}}\right)\right| \leq C_{r} \mathscr{M}\left(\widetilde{L}\left[\alpha_{1}, \cdots, \alpha_{r}\right]\right) .
$$

$\kappa\left(Y_{\alpha_{1}}, \cdots, Y_{\alpha_{r}}\right)$: mixed cumulants $\widetilde{L}\left[\alpha_{1}, \cdots, \alpha_{r}\right]$: graph induced by \widetilde{L} on vertices $\alpha_{1}, \cdots, \alpha_{r}$.
$\mathscr{M}(K)$: Maximum weight of a spanning tree of K (= product of the edge weights; ε^{2} in the example).

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in $[0,1]$ on each edge (weight $0 \equiv$ no edge).

Definition (F., '18)
Fix $\boldsymbol{C}=\left(C_{r}\right)_{r \geq 1}$. A weighted graph \widetilde{L} with vertex set A is a C-weighted dependency graph for the family $\left\{Y_{\alpha}, \alpha \in A\right\}$ if, for any $\alpha_{1}, \ldots, \alpha_{r}$ in A,

$$
\left|\kappa\left(Y_{\alpha_{1}}, \cdots, Y_{\alpha_{r}}\right)\right| \leq C_{r} \mathscr{M}\left(\widetilde{L}\left[\alpha_{1}, \cdots, \alpha_{r}\right]\right) .
$$

Intuition: the smaller the edge weights are, the smaller the cumulant should be. The edge weights quantify the dependencies between variables.
(Known fact: mixed cumulants of independent r.v. vanish.)

A normality criterion for weighted dependency graphs

Setting: for each n,

- $\left\{Y_{n, i}, 1 \leq i \leq N_{n}\right\}$ be unif. bounded random variables; $\left|Y_{n, i}\right|<M$ a.s.
- we have a C-weighted dependency graph \widetilde{L}_{n} with weighted maximal degree $D_{n}-1$ (with a sequence $\boldsymbol{C}=\left(C_{r}\right)_{r \geq 1}$ independent of n).
- we set $X_{n}=\sum_{i=1}^{N_{n}} Y_{n, i}$ and $\sigma_{n}^{2}=\operatorname{Var}\left(X_{n}\right)$.

Theorem (F., '18)
Assume that $\left(\frac{N_{n}}{D_{n}}\right)^{1 / s} \frac{D_{n}}{\sigma_{n}} \rightarrow 0$ for some integer s.
Then X_{n} is asymptotically normal.

A normality criterion for weighted dependency graphs

Setting: for each n,

- $\left\{Y_{n, i}, 1 \leq i \leq N_{n}\right\}$ be unif. bounded random variables; $\left|Y_{n, i}\right|<M$ a.s.
- we have a C-weighted dependency graph \widetilde{L}_{n} with weighted maximal degree $D_{n}-1$ (with a sequence $\boldsymbol{C}=\left(C_{r}\right)_{r \geq 1}$ independent of n).
- we set $X_{n}=\sum_{i=1}^{N_{n}} Y_{n, i}$ and $\sigma_{n}^{2}=\operatorname{Var}\left(X_{n}\right)$.

Theorem (F., '18)
Assume that $\left(\frac{N_{n}}{D_{n}}\right)^{1 / s} \frac{D_{n}}{\sigma_{n}} \rightarrow 0$ for some integer s.
Then X_{n} is asymptotically normal.

Next few slides: an example of application.

Patterns in set-partitions

We think at partitions as arch systems, e.g. $\{1,3,4\},\{2,5\}$ is

Definition (Chern, Diaconis, Kane, Rhodes, '14)
An occurrence of a set-partition \mathscr{A} of size ℓ in another set-partition π is a list $\left(i_{1}, \ldots, i_{\ell}\right)$ s.t. $\left(i_{j}, i_{k}\right)$ is an arch of π whenever (j, k) is an arch of \mathscr{A}.

Example: an occurrence of $\{1,3,4\},\{2,5\}$

Patterns in set-partitions

We think at partitions as arch systems, e.g. $\{1,3,4\},\{2,5\}$ is

Definition (Chern, Diaconis, Kane, Rhodes, '14)
An occurrence of a set-partition \mathscr{A} of size ℓ in another set-partition π is a list $\left(i_{1}, \ldots, i_{\ell}\right)$ s.t. $\left(i_{j}, i_{k}\right)$ is an arch of π whenever (j, k) is an arch of \mathscr{A}.

Background:

- standard well-studied examples: crossings, nestings, k-crossings, k-nestings;
- Chern, Diaconis, Kane and Rhodes proved the asymptotic normality of the number of crossings ('15).

A weighted dependency graph for set-partitions

Let π be a uniform random set-partition of size n and $1[\widehat{i j}]$ be the indicator variable of the arc $\{i, j\}(1 \leq i<j \leq n)$.

Proposition (F., 19)
The complete graph with weights

$$
w\left(1[\widehat{i j}], \mathbf{1}\left[\hat{i j^{\prime}}\right]\right)= \begin{cases}1 & \text { if } i=i^{\prime} \text { or } j=j^{\prime} \\ 1 / n & \text { otherwise }\end{cases}
$$

is a weighted dependency graph for the family $\{1[\overparen{i j}], i<j\}$.

Asymptotic normality of pattern counts in set partitions

Using a general stability property of weighted-dependency graphs, we get:
Proposition (F., '19)
Fix a pattern \mathscr{A}. Let $1\left[\pi_{I}=\mathscr{A}\right]$ be the indicator of having the pattern \mathscr{A} at position I. Then this family of r.v. has a weighted dependency graph with weights

$$
w\left(\mathbf{1}\left[\pi_{I}=\mathscr{A}\right], \mathbf{1}\left[\pi_{I^{\prime}}=\mathscr{A}\right]\right)= \begin{cases}1 & \text { if } I \cap I^{\prime} \neq \varnothing \\ 1 / n & \text { otherwise }\end{cases}
$$

Asymptotic normality of pattern counts in set partitions

Using a general stability property of weighted-dependency graphs, we get:
Proposition (F., '19)
Fix a pattern \mathscr{A}. Let $\mathbf{1}\left[\pi_{l}=\mathscr{A}\right]$ be the indicator of having the pattern \mathscr{A} at position I. Then this family of r.v. has a weighted dependency graph with weights

$$
w\left(1\left[\pi_{I}=\mathscr{A}\right], \mathbf{1}\left[\pi^{\prime}=\mathscr{A}\right]\right)= \begin{cases}1 & \text { if } I \cap I^{\prime} \neq \varnothing ; \\ 1 / n & \text { otherwise } .\end{cases}
$$

Using (a generalization of) the above normality criterion, we get Corollary (F., '19, wide generalization of CDKR'14)
For any pattern \mathscr{A}, the number $X_{n}^{\mathscr{A}}$ of occurrences of \mathscr{A} in a uniform random set-partition π of $[n]$ is asymptotically normal.

Part 3

Brownian limits for random permutations
(co-authors: F. Bassino, J. Borga, M. Bouvel, M. Drmota
L. Gerin, M. Maazoun, A. Pierrot, B. Stufler)

Context

- In the previous part, we considered the number of copies of a given subconfiguration in a uniform random object (subgraphs in random graphs, patterns in random set partitions, ...).

Context

- In the previous part, we considered the number of copies of a given subconfiguration in a uniform random object (subgraphs in random graphs, patterns in random set partitions, ...).
- A parallel line of research consists in studying a random object conditioned to avoid a given subconfiguration
- classical models of this kind: self-avoiding walks, planar graphs, ...
- in the last decade: emerging literature on random pattern-avoiding permutations.

Context

- In the previous part, we considered the number of copies of a given subconfiguration in a uniform random object (subgraphs in random graphs, patterns in random set partitions, ...).
- A parallel line of research consists in studying a random object conditioned to avoid a given subconfiguration
- classical models of this kind: self-avoiding walks, planar graphs, ...
- in the last decade: emerging literature on random pattern-avoiding permutations.

Such constrained models are in general very hard. A good situation is when we have a constructive way to describe the objects. Substitution operations may provide such constructive way.

Substitution operation and simple permutations

We see permutations as "diagrams"

256143

Substitution operation and simple permutations

We see permutations as "diagrams"

256143

Substitution operation on permutation
$2413[132,21,1,12]=$

$=24387156$

Substitution operation and simple permutations

We see permutations as "diagrams"

256143

Substitution operation on permutation $2413[132,21,1,12]=$

$=24387156$

Definition

A permutation is called simple if it cannot be written as substitution of smaller permutations.

Our problem

- We consider a set of permutations \mathscr{C} defined by the avoidance of some substructures (= patterns) and containing finitely many simple permutations;
- For each n, let σ_{n} be a uniform random permutation of size n in \mathscr{C};
- What is the "limit of the diagram" of σ_{n} ?

Our problem

- We consider a set of permutations \mathscr{C} defined by the avoidance of some substructures (= patterns) and containing finitely many simple permutations;
- For each n, let σ_{n} be a uniform random permutation of size n in \mathscr{C};
- What is the "limit of the diagram" of σ_{n} ?

Note: the limit is in the sense of "permuton"; roughly, we see a permutation as a probability measure on $[0,1]^{2}$

$$
\sigma \leftrightarrow \frac{1}{n} \sum_{i=1}^{n} \delta_{(i / n, \sigma(i) / n)}
$$

and we use the notion of weak convergence of measures.

A dichotomy result

Theorem (Bassino, Bouvel, F., Gerin, Maazoun, Pierrot, '19)
In the setting of the previous slide, under an additional technical condition, σ_{n} converges

- either to a so-called X-permuton;
- or to a so-called Brownian separable permuton.

A dichotomy result

Theorem (Bassino, Bouvel, F., Gerin, Maazoun, Pierrot, '19) In the setting of the previous slide, under an additional technical condition, σ_{n} converges

- either to a so-called X-permuton;
- or to a so-called Brownian separable permuton.

Simulations of large random permutations in classes with finitely many simple permutations.

Some perspectives

(1) Analyze algebraic models of random tableaux (= sequences of growing Young diagrams); i.e. we aim at increasing the dimension of the model (adding time).
(2) On weighted dependency graphs:

- more applications: e.g. patterns in conjugacy classes of permutations;
- example coming from determinantal point processes.
(3) Related to random constrained permutations:
- consider other combinatorial objects (we have some results for graph classes);
- look for convergence laws for permutations in classes.

That's all folks!

Thank you
 for your attention!

