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My research field(s)

@ Algebraic combinatorics: symmetric group representations, symmetric
functions, ...with a bias towards formulas suited for asymptotic
analysis.

@ Probabilistic combinatorics: random partitions (integer and set
partitions), permutations, and graphs.
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My research field(s)

@ Algebraic combinatorics: symmetric group representations, symmetric

functions, ...with a bias towards formulas suited for asymptotic
analysis.

@ Probabilistic combinatorics: random partitions (integer and set
partitions), permutations, and graphs.
In my habiliation thesis:
© Algebraic models of random partitions;
@ Weighted dependency graphs;

© Universal limits for random pattern-avoiding permutations.

V. Féray (CNRS, IECL) Soutenance d’'HDR Nancy, 2021-09 2/28



Transition

Part 1
Algebraic models of random partitions

(co-authors: M. Dotega, P.-L. Méliot)
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Algebraic models of random partitions

Partitions

Definition

An integer partition (or partition for short) is a non-increasing list
A=(A1,---,Ap) of positive integers. Its size is |A]:= A1 +---+ Ay.

It is customary to represent a partition A =(A4,...17) by a Young diagram:

(7,4,3,3,2)
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Plancherel measure

A Young tableaux of shape A is a filling of A with

numbers from 1 to n with increasing rows and 7112
columns. 4 10]15
2 14
1 11]13
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Plancherel measure

A Young tableaux of shape A is a filling of A with

numbers from 1 to n with increasing rows and 7112
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Let dim(1) be the number of Young tableaux of | 2 14
shape A. It is the dimension of the irreducible rep- 1 11|13

resentation of S, associated with A.
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Plancherel measure

A Young tableaux of shape A is a filling of A with
numbers from 1 to n with increasing rows and
columns.

Let dim(1) be the number of Young tableaux of
shape A. It is the dimension of the irreducible rep-
resentation of S, associated with A.

Definition

The Plancherel measure for Sym,, (or Plancherel measure for short) is the
probability measure Pp| on the set of partitions of n such that for any

partition A of n, we have

Ppi(A) = L (dim(4))2.

12

10|15

14

=N dN

11

13]

Well studied since the '60es/'70es (Ulam, Hammersley, Vershik—Kerov,

Logan—Shepp, Baik-Deift-Johansson, Borodin—Okounkov—Olshanski, ..
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Algebraic models of random partitions

Limit results

Theorem (Logan—Shepp '77/Kerov—Vershik '77)

For each n=1, let A" be a random Young diagram of size n, distributed
with Plancherel measure. Then, after rescaling in both directions to have
area 1, A" converges to an explicit limit shape Q.

A central limit theorem for functionals F(A") was given later by Kerov
('93).
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Algebraic models of random partitions

Limit results — an illustration

(©Notices of the AMS, Feb. 2011, front cover.
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Algebraic models of random partitions

Two generalizations of Plancherel measure

@ g-Plancherel measure linked to Hecke algebras (Kerov '92, Strahov
'08)

imulatio =1/2 (and n=200)

wn
=]
ok
SR
Q

e a-Plancherel measure linked to Jack polynomials (Kerov '00, Fulman
04, ...)

Simulation for a =1/3 (and n=500)
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Algebraic models of random partitions

Limit results

Theorem (F. — Méliot '12)

Fix g<1 and let A" be a random Young diagram of size n, distributed with
q-Plancherel measure. Then, for each i > 1, the quantity A /n
(renormalized length of the i-th row of A") converges in probability to
(1-q)q" "

Theorem (Dotega — F. '16)
Fix a >0, and let A" be a random Young diagram of size n, distributed
with a-Plancherel measure. Then, after rescaling rows by a factor \/an and

columns by \/g , the diagram A" converges to the same limit shape Q as
fora =1.

We also have central limit theorems for functionals F(A") in both cases.
Soutenance d'HDR Nancy, 2021-09 9/28



Proof strategy (following Kerov '93, lvanov—Olshanski '03)

@ We consider character values of the symmetric group:
— oy T O]
g dim(Q)
Easy lemma: E[y,] =0 unless o =id.
With some work (to compute higher moments), one can find the
asymptotic behaviour of ¥,.
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Proof strategy (following Kerov '93, lvanov—Olshanski '03)

@ We consider character values of the symmetric group:
— oy T O]
g dim(Q)
Easy lemma: E[y,] =0 unless o =id.
With some work (to compute higher moments), one can find the
asymptotic behaviour of ¥,.

@ Express the “shape” of Young diagrams in terms of characters, e.g. for
all k, the function A— Y(1;—)¥ is a linear combination of characters.

One can find its asymptotics using 1.
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Proof strategy (following Kerov '93, lvanov—Olshanski '03)

@ We consider character values of the symmetric group:
— oy T O]
g dim(Q)
Easy lemma: E[y,] =0 unless o =id.
With some work (to compute higher moments), one can find the
asymptotic behaviour of ¥,.

@ Express the “shape” of Young diagrams in terms of characters, e.g. for
all k, the function A — Y.(1;—1) is a linear combination of characters.
One can find its asymptotics using 1.

We extended this strategy to q/a-Plancherel measure.

Difficulties: manipulate the analogues of characters in step 1, find the good
functionals of the shape for step 2, ... Needed new ideas (e.g. multivariate
Stein's method)
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Proof strategy (following Kerov '93, lvanov—Olshanski '03)

@ We consider character values of the symmetric group:
— oy T O]
g dim(Q)
Easy lemma: E[y,] =0 unless o =id.
With some work (to compute higher moments), one can find the
asymptotic behaviour of ¥,.

@ Express the “shape” of Young diagrams in terms of characters, e.g. for
all k, the function A — Y.(1;—1) is a linear combination of characters.
One can find its asymptotics using 1.

We extended this strategy to q/a-Plancherel measure.

Difficulties: manipulate the analogues of characters in step 1, find the good
functionals of the shape for step 2, ... Needed new ideas (e.g. multivariate
Stein's method)

Motto: algebra gives tractable probabilistic models.
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Transition

Part 2
Weighted dependency graphs

(co-authors: J. Dousse, P.-L. Méliot, A. Nikeghbali)
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ST W ERENE ENIGTEL )l Classical dependency graphs

Context

Consider some sequence of random variables Xj,, typically the number of
substructures of a given type in a random object.

@ number of triangles in random graphs;
@ number of exceedances (i s.t. a(i)=1/) in permutations;
° ...
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ST W ERENE ENIGTEL )l Classical dependency graphs

Context

Consider some sequence of random variables Xj,, typically the number of
substructures of a given type in a random object.

Goal: prove that X, is asymptotically normal, i.e., as n— +oo
Xn—E[X
Xn —E[Xh] 9 4(0,1).
Var(Xp)
Main methods:

@ analytic method: Flajolet, Sedgewick, Hwang, ...
e moment/cumulant method: Janson, Mikhailov, ...
@ Stein's method: Stein, Chen, Barbour, ...
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ST W ERENE ENIGTEL )l Classical dependency graphs

Context

Consider some sequence of random variables Xj,, typically the number of
substructures of a given type in a random object.

Goal: prove that X, is asymptotically normal, i.e., as n— +oo
Xn—E[X
Xn —E[Xh] 9 4(0,1).
Var(Xp)
Main methods:

@ analytic method: Flajolet, Sedgewick, Hwang, ...
e moment/cumulant method: Janson, Mikhailov, ...
@ Stein's method: Stein, Chen, Barbour, ...

We will present (weighted) dependency graphs, which are based on the
moment method.
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ST W ERENE ENIGTEL )l Classical dependency graphs

Dependency graphs

Definition (Malyshev, '80, Petrovskaya/Leontovich, '82, Janson, '88)

A graph L with vertex set A is a dependency graph for the family
{Yy, a € A} if the following holds for any A;, Ay < A:

there is no edge . {Yog, @€ A1} and {Y,, a € As}

between A; and A, are independent
W
Soutenance d’'HDR

Nancy, 2021-09 13 /28




Szl chs e s
Dependency graphs

Definition (Malyshev, '80, Petrovskaya/Leontovich, '82, Janson, '88)

A graph L with vertex set A is a dependency graph for the family
{Yy,a € A} if the following holds for any Ay, Ay < A:

there is no edge . {Yog, @€ A1} and {Y,, a € As}
between A; and A, are independent

Example L is a dependency graph for {Y1,..., Y7}
U
2 ! Y; is independent from Ys, Y5, Ys and Y7
L= {Y1, Y2} and {Y4, Ys, Y7} are independent
Soutenance d’HDR

Nancy, 2021-09 13 /28



ST W ERENE ENIGTEL )l Classical dependency graphs

Triangles in Erdés-Rényi random graphs

Erdds-Rényi model of random graphs G(n, p): 3 .2 1
@ G has n vertices labelled 1,...,n;
@ each pair {/,j} is an edge of G with 4 >' 8
probability p, and these events are
independent from each other. 5 . 7
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ST W ERENE ENIGTEL )l Classical dependency graphs

Triangles in Erdés-Rényi random graphs

Erdds-Rényi model of random graphs G(n, p): 3 .2 1
@ G has n vertices labelled 1,...,n;
@ each pair {/,j} is an edge of G with 4 >' 8
probability p, and these events are
independent from each other. 5 . 7

Example of dependency graph

We set Yj; i =1if G contains the triangle {i,, k} and 0 otherwise. Two Y
variables are independent unless the corresponding triangles share an edge.
We can encode this in a dependency graph L, where {i,, k} is linked to
{i',j',k'} if they have 2 elements (i.e. vertices) in common.
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ST W ERENE ENIGTEL )l Classical dependency graphs

Triangles in Erdés-Rényi random graphs

Erdds-Rényi model of random graphs G(n, p): 3 .2 1
@ G has n vertices labelled 1,...,n;
@ each pair {/,j} is an edge of G with 4 >' 8
probability p, and these events are
independent from each other. 5 . 7

Example of dependency graph

We set Yj; i =1if G contains the triangle {i,, k} and 0 otherwise. Two Y
variables are independent unless the corresponding triangles share an edge.
We can encode this in a dependency graph L, where {i,, k} is linked to
{i',j',k'} if they have 2 elements (i.e. vertices) in common.

Claim: L, is regular with degree 3(n—3).
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ST W ERENE ENIGTEL )l Classical dependency graphs

Janson’s normality criterion

Setting: for each n,
@ let {Y,;,1<i< N,} be unif. bounded random variables; | Y, | < M a.s.
@ we have a dependency graph L, with maximal degree D, —1.
o we set X, = Z;\i"l Y,,i and 02 = Var(X,).
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ST W ERENE ENIGTEL )l Classical dependency graphs

Janson’s normality criterion

Setting: for each n,

@ let {Y,;,1<i< N,} be unif. bounded random variables; | Y, | < M a.s.
@ we have a dependency graph L, with maximal degree D, —1.
o we set X, = Z;\i"l Y,,i and 02 = Var(X,).

Theorem (Janson, 1988)

N 1/s D .
Assume that (ﬁ”) =2 — 0 for some integer s.
Then X, is asymptotically normal.
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ST W ERENE ENIGTEL )l Classical dependency graphs

Janson’s normality criterion

Setting: for each n,

@ let {Y,;,1<i< N,} be unif. bounded random variables; | Y, | < M a.s.
@ we have a dependency graph L, with maximal degree D, —1.
o we set X, = Z;\i"l Y,,i and 02 = Var(X,).

Theorem (Janson, 1988)

N 1/s D .
Assume that (ﬁ”) =2 — 0 for some integer s.
Then X, is asymptotically normal.

Example: For triangles in G(n,p)
N, =0(n®), D, =0(n) and o, =0(n?),

so that asymptotic normality of the number of triangles follows.

V. Féray (CNRS, IECL) Soutenance d'HDR Nancy, 2021-09
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Weighted dependency graphs Generalities

Models with "weak dependencies"

In many models, we do not have independence, but only weak
dependencies:

@ subword occurrences in a text generated by a Markovian source;
@ subgraph counts in random graphs with fixed number of edges;

© number of exceedances (i s.t. o(i)=1) in a uniform random
permutation;

@ patterns in multiset permutations and set partitions, .. .;

@ spins or patterns of spins in Ising model.
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Models with "weak dependencies"

In many models, we do not have independence, but only weak
dependencies:

@ subword occurrences in a text generated by a Markovian source;
@ subgraph counts in random graphs with fixed number of edges;

© number of exceedances (i s.t. o(i)=1) in a uniform random
permutation;

@ patterns in multiset permutations and set partitions, .. .;

@ spins or patterns of spins in Ising model.

What | did: extend the notion of dependency graphs and Janson's
normality criterion, to cover the above frameworks.
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Weighted dependency graphs Generalities

Models with "weak dependencies"

In many models, we do not have independence, but only weak
dependencies:

@ subword occurrences in a text generated by a Markovian source;
@ subgraph counts in random graphs with fixed number of edges;

© number of exceedances (i s.t. o(i)=1) in a uniform random
permutation;

@ patterns in multiset permutations and set partitions, .. .;

@ spins or patterns of spins in Ising model.
What | did: extend the notion of dependency graphs and Janson's

normality criterion, to cover the above frameworks.

Note: existing theories, such as mixing, work well for models with a spatial
structure (1 and 5 in the list); some specific approaches have been
developed for 2 and 3.
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Weighted dependency graphs RREUIEIRIES

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0= no edge).

Definition (F., '18)

Fix C=(C,)=1. A weighted graph L with vertex set A is a C-weighted
dependency graph for the family {Yy,a € A} if, for any a1,

|K(Ya1""’Yar)

.., arin A,

< C M (Lay, -, ar]).
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Weighted dependency graphs RREUIEIRIES

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0= no edge).

Definition (F., '18)

Fix C=(C,)=1. A weighted graph L with vertex set A is a C-weighted
dependency graph for the family {Y,,a@ € A} if, for any a1, ..., a, in A,

|K(Ya1"" ) Yar)| = Cr/%(z[al"" sar]).

k(Yay,-+» Ya,): mixed cumulants
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el
Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0= no edge).

Definition (F., '18)

Fix C=(C,)=1. A weighted graph L with vertex set A is a C-weighted
dependency graph for the family {Y,,a@ € A} if, for any a1, ..., a, in A,

|K(Ya1"" ) Yar)| = Cr/%(z[al"" sar]).

k(Yay,-+» Ya,): mixed cumulants

Z[al,---,ar]: graph induced by L on
vertices a1, -, ar.
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el
Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0= no edge).

Definition (F., '18)

Fix C=(C,)=1. A weighted graph L with vertex set A is a C-weighted
dependency graph for the family {Y,,a@ € A} if, for any a1, ..., a, in A,

|K(Ya1"" ) Yar)| = Cr/%(z[al"" sar]).

k(Yay,-+» Ya,): mixed cumulants

Z[al,---,ar]: graph induced by L on
vertices a1, -, ar.

A (K): Maximum weight of a span-
ning tree of K (= product of the edge
weights; €2 in the example).
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el
Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0= no edge).

Definition (F., '18)

Fix C=(C,)=1. A weighted graph L with vertex set A is a C-weighted
dependency graph for the family {Y,,a@ € A} if, for any a1, ..., a, in A,

|K(Ya1"" ) Yar)| = Cr/%(z[“l"" ,ar]).

Intuition: the smaller the edge weights are, the smaller the cumulant
should be. The edge weights quantify the dependencies between variables.

(Known fact: mixed cumulants of independent r.v. vanish.)
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Weighted dependency graphs RREUIEIRIES

A normality criterion for weighted dependency graphs

Setting: for each n,
@ {Y,i,1<i< Ny} be unif. bounded random variables; | Y, ;| <M a.s.

o we have a C-weighted dependency graph L, with weighted maximal
degree D, —1 (with a sequence C =(C,),>1 independent of n).

@ we set X, = Zf\i"l Y,.i and 02 = Var(X,).

Theorem (F., '18)

N 1/s D .
Assume that (ﬁ”) =2 — 0 for some integer s.
Then X, is asymptotically normal.
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Weighted dependency graphs RREUIEIRIES

A normality criterion for weighted dependency graphs

Setting: for each n,
@ {Y,i,1<i< Ny} be unif. bounded random variables; | Y, ;| <M a.s.

o we have a C-weighted dependency graph L, with weighted maximal
degree D, —1 (with a sequence C =(C,),>1 independent of n).

@ we set X, = Zf\i"l Y,.i and 02 = Var(X,).

Theorem (F., '18)

N 1/s D .
Assume that (ﬁ”) =2 — 0 for some integer s.
Then X, is asymptotically normal.

Next few slides: an example of application.
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Weighted dependency graphs Patterns in set-partitions

Patterns in set-partitions

We think at partitions as arch systems, e.g. {1,3,4},{2,5} is

1 2 3 4 5
Definition (Chern, Diaconis, Kane, Rhodes, '14)

An occurrence of a set-partition «f of size ¢ in another set-partition 7 is a
list (i1,...,0¢) s.t. (ij,ik) is an arch of m whenever (j, k) is an arch of .

Example: an occurrence of {1,3,4},{2,5}

¢ o e

i1 =2 2 =3 i3 =17 14 = i5 = 10
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Weighted dependency graphs Patterns in set-partitions

Patterns in set-partitions

We think at partitions as arch systems, e.g. {1,3,4},{2,5} is

1 2 3 4 5
Definition (Chern, Diaconis, Kane, Rhodes, '14)

An occurrence of a set-partition «f of size ¢ in another set-partition 7 is a
list (i1,...,0¢) s.t. (ij,ik) is an arch of m whenever (j, k) is an arch of .

Background:

o standard well-studied examples: crossings, nestings, k-crossings,
k-nestings;

@ Chern, Diaconis, Kane and Rhodes proved the asymptotic normality of
the number of crossings ('15).

V. Féray (CNRS, IECL) Soutenance d’'HDR Nancy, 2021-09 19 /28



ARG T e
A weighted dependency graph for set-partitions

Let 7 be a uniform random set-partition of size n and 1[/j] be the indicator
variable of the arc {i,j} (1<i<j<n).
Proposition (F., 19)
The complete graph with weights
— 1 ifi=i"orj=j,
w(Lg] 1)) = {

1/n  otherwise.

is a weighted dependency graph for the family {1[if],i <j}.

or AN
N/
strongly dependent arcs: weight 1 weakly dependent arcs: weight 1/n

V. Féray (CNRS, IECL) Soutenance d’'HDR Nancy, 2021-09 20 /28



Weighted dependency graphs Patterns in set-partitions

Asymptotic normality of pattern counts in set partitions

Using a general stability property of weighted-dependency graphs, we get:
Proposition (F., '19)

Fix a pattern of . Let 1[m) = o] be the indicator of having the pattern <f
at position . Then this family of r.v. has a weighted dependency graph
with weights

1 ifInl#g@;

w(l[r, =] 1n) = o4]) = {1/,, otherwise.
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Weighted dependency graphs Patterns in set-partitions

Asymptotic normality of pattern counts in set partitions

Using a general stability property of weighted-dependency graphs, we get:

Proposition (F., '19)

Fix a pattern of . Let 1[m) = o] be the indicator of having the pattern <f
at position . Then this family of r.v. has a weighted dependency graph
with weights

1 ifInl#g@;

w(l[r, =] 1n) = o4]) = {1/,, otherwise.

Using (a generalization of) the above normality criterion, we get

Corollary (F., '19, wide generalization of CDKR'14)

For any pattern «f, the number X5 of occurrences of < in a uniform
random set-partition 7 of [n] is asymptotically normal.
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Transition

Part 3
Brownian limits for random permutations

(co-authors: F. Bassino, J. Borga, M. Bouvel, M. Drmota
L. Gerin, M. Maazoun, A. Pierrot, B. Stufler)
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Brownian limits for random permutations

Context

@ In the previous part, we considered the number of copies of a given
subconfiguration in a uniform random object (subgraphs in random
graphs, patterns in random set partitions, ... ).
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Brownian limits for random permutations

Context

@ In the previous part, we considered the number of copies of a given
subconfiguration in a uniform random object (subgraphs in random
graphs, patterns in random set partitions, ... ).

@ A parallel line of research consists in studying a random object
conditioned to avoid a given subconfiguration
e classical models of this kind: self-avoiding walks, planar graphs, ...
e in the last decade: emerging literature on random pattern-avoiding
permutations.
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Brownian limits for random permutations

Context

@ In the previous part, we considered the number of copies of a given
subconfiguration in a uniform random object (subgraphs in random
graphs, patterns in random set partitions, ... ).

@ A parallel line of research consists in studying a random object
conditioned to avoid a given subconfiguration

e classical models of this kind: self-avoiding walks, planar graphs, ...
e in the last decade: emerging literature on random pattern-avoiding
permutations.

Such constrained models are in general very hard. A good situation is when
we have a constructive way to describe the objects. Substitution operations
may provide such constructive way.
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Brownian limits for random permutations

Substitution operation and simple permutations

We see permutations as “diagrams’

256143
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Brownian limits for random permutations

Substitution operation and simple permutations

We see permutations as “diagrams”’ | Substitution operation on permutation
. 2413(132,21,1,12] =

JuEn @] e
. @ - o

. 132 . [)

@ (o]
256143 = 24387156
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Brownian limits for random permutations

Substitution operation and simple permutations

We see permutations as “diagrams”’ | Substitution operation on permutation
. 2413(132,21,1,12] =

: @] e
SO @ _ o

. 132 . [)

@ (o]
256143 = 24387156

Definition
A permutation is called simple if it cannot be written as substitution of
smaller permutations.
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Brownian limits for random permutations

Our problem

@ We consider a set of permutations ¢ defined by the avoidance of
some substructures (= patterns) and containing finitely many simple
permutations;

@ For each n, let o, be a uniform random permutation of size n in €;

@ What is the “limit of the diagram” of o7
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Brownian limits for random permutations

Our problem

@ We consider a set of permutations ¢ defined by the avoidance of

some substructures (= patterns) and containing finitely many simple
permutations;

@ For each n, let o, be a uniform random permutation of size n in €;
@ What is the “limit of the diagram” of o7

Note: the limit is in the sense of “permuton”; roughly, we see a
permutation as a probability measure on [0,1]?

1 n
o < =3 8(i/n, o(i)/n)
mi=1

and we use the notion of weak convergence of measures.
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A dichotomy result

Theorem (Bassino, Bouvel, F., Gerin, Maazoun, Pierrot, '19)

In the setting of the previous slide, under an additional technical condition,
o, converges

@ either to a so-called X-permuton;

@ or to a so-called Brownian separable permuton.
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In the setting of the previous slide, under an additional technical condition,

o, converges
@ either to a so-called X-permuton;

@ or to a so-called Brownian separable permuton.

E s : \\

Simulations of large random permutations in classes
with finitely many simple permutations.
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Some perspectives

© Analyze algebraic models of random tableaux (= sequences of growing
Young diagrams); i.e. we aim at increasing the dimension of the model
(adding time).

@ On weighted dependency graphs:

e more applications: e.g. patterns in conjugacy classes of permutations;
e example coming from determinantal point processes.

© Related to random constrained permutations:

o consider other combinatorial objects (we have some results for graph
classes);
e look for convergence laws for permutations in classes.
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N
That's all folks!

Thank you
for your attention!
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