On random combinatorial structures: partitions, permutations and asymptotic normality

Valentin Féray Habilitation à diriger les recherches

CNRS, Université de Lorraine

Nancy, 21 septembre 2021

My research field(s)

- Algebraic combinatorics: symmetric group representations, symmetric functions, ... with a bias towards formulas suited for asymptotic analysis.
- Probabilistic combinatorics: random partitions (integer and set partitions), permutations, and graphs.

My research field(s)

- Algebraic combinatorics: symmetric group representations, symmetric functions, ... with a bias towards formulas suited for asymptotic analysis.
- Probabilistic combinatorics: random partitions (integer and set partitions), permutations, and graphs.

In my habiliation thesis:

- Algebraic models of random partitions;
- Weighted dependency graphs;
- **③** Universal limits for random pattern-avoiding permutations.

Part 1 Algebraic models of random partitions

(co-authors: M. Dołęga, P.-L. Méliot)

Partitions

Definition

An integer partition (or *partition* for short) is a non-increasing list $\lambda = (\lambda_1, \dots, \lambda_\ell)$ of positive integers. Its size is $|\lambda| := \lambda_1 + \dots + \lambda_\ell$.

It is customary to represent a partition $\lambda = (\lambda_1, \dots, \lambda_\ell)$ by a Young diagram:

Plancherel measure

A Young tableaux of shape λ is a filling of λ with numbers from 1 to *n* with increasing rows and columns.

7	12			
4	9	10	15	
2	5	8	14	
1	3	6	11	13

Plancherel measure

A Young tableaux of shape λ is a filling of λ with numbers from 1 to *n* with increasing rows and columns.

Let $\dim(\lambda)$ be the number of Young tableaux of shape λ . It is the dimension of the *irreducible representation* of S_n associated with λ .

7	12			
4	9	10	15	
2	5	8	14	
1	3	6	11	13

Plancherel measure

A Young tableaux of shape λ is a filling of λ with numbers from 1 to *n* with increasing rows and columns.

Let $\dim(\lambda)$ be the number of Young tableaux of shape λ . It is the dimension of the *irreducible representation* of S_n associated with λ .

Definition

The Plancherel measure for Sym_n (or *Plancherel measure* for short) is the probability measure \mathbb{P}_{Pl} on the set of partitions of *n* such that for any partition λ of *n*, we have

$$\mathbb{P}_{\mathsf{PI}}(\lambda) = \frac{1}{n!} (\dim(\lambda))^2.$$

Well studied since the '60es/'70es (Ulam, Hammersley, Vershik–Kerov, Logan–Shepp, Baik–Deift–Johansson, Borodin–Okounkov–Olshanski, ...)

V. Féray (CNRS, IECL)

Soutenance d'HDR

5/28

Limit results

Theorem (Logan–Shepp '77/Kerov–Vershik '77)

For each $n \ge 1$, let λ^n be a random Young diagram of size n, distributed with Plancherel measure. Then, after rescaling in both directions to have area 1, λ^n converges to an explicit limit shape Ω .

A central limit theorem for functionals $F(\lambda^n)$ was given later by Kerov ('93).

Limit results - an illustration

©Notices of the AMS, Feb. 2011, front cover.

V. Féray (CNRS, IECL)

Soutenance d'HDR

Two generalizations of Plancherel measure

• *q*-Plancherel measure linked to Hecke algebras (Kerov '92, Strahov '08)

α-Plancherel measure linked to Jack polynomials (Kerov '00, Fulman '04, ...)

Limit results

Theorem (F. – Méliot '12)

Fix q < 1 and let λ^n be a random Young diagram of size n, distributed with q-Plancherel measure. Then, for each $i \ge 1$, the quantity λ_i^n/n (renormalized length of the *i*-th row of λ^n) converges in probability to $(1-q)q^{i-1}$.

Theorem (Dołęga – F. '16)

Fix $\alpha > 0$, and let λ^n be a random Young diagram of size n, distributed with α -Plancherel measure. Then, after rescaling rows by a factor $\sqrt{\alpha n}$ and columns by $\sqrt{\frac{n}{\alpha}}$, the diagram λ^n converges to the same limit shape Ω as for $\alpha = 1$.

We also have central limit theorems for functionals $F(\lambda^n)$ in both cases.

V. Féray (CNRS, IECL)

Soutenance d'HDR

9/28

• We consider character values of the symmetric group:

$$\overline{\chi}_{\sigma}(\lambda) := \frac{\operatorname{Tr}[\rho^{\lambda}(\sigma)]}{\dim(\lambda)}$$

Easy lemma: $\mathbb{E}[\overline{\chi}_{\sigma}] = 0$ unless $\sigma = id$.

With some work (to compute higher moments), one can find the asymptotic behaviour of $\overline{\chi}_{\sigma}$.

• We consider character values of the symmetric group:

$$\overline{\chi}_{\sigma}(\lambda) := \frac{\operatorname{Tr}[\rho^{\lambda}(\sigma)]}{\dim(\lambda)}$$

Easy lemma: $\mathbb{E}[\overline{\chi}_{\sigma}] = 0$ unless $\sigma = id$. With some work (to compute higher moments), one can find the asymptotic behaviour of $\overline{\chi}_{\sigma}$.

Express the "shape" of Young diagrams in terms of characters, e.g. for all k, the function λ → Σ(λ_i − i)^k is a linear combination of characters. One can find its asymptotics using 1.

• We consider character values of the symmetric group:

$$\overline{\chi}_{\sigma}(\lambda) := \frac{\operatorname{Tr}[\rho^{\lambda}(\sigma)]}{\dim(\lambda)}$$

Easy lemma: $\mathbb{E}[\overline{\chi}_{\sigma}] = 0$ unless $\sigma = id$. With some work (to compute higher moments), one can find the asymptotic behaviour of $\overline{\chi}_{\sigma}$.

Express the "shape" of Young diagrams in terms of characters, e.g. for all k, the function λ → ∑(λ_i − i)^k is a linear combination of characters. One can find its asymptotics using 1.

We extended this strategy to q/α -Plancherel measure.

Difficulties: manipulate the analogues of characters in step 1, find the good functionals of the shape for step 2, ... Needed new ideas (e.g. multivariate Stein's method)

• We consider character values of the symmetric group:

$$\overline{\chi}_{\sigma}(\lambda) := \frac{\operatorname{Tr}[\rho^{\lambda}(\sigma)]}{\dim(\lambda)}$$

Easy lemma: $\mathbb{E}[\overline{\chi}_{\sigma}] = 0$ unless $\sigma = id$. With some work (to compute higher moments), one can find the asymptotic behaviour of $\overline{\chi}_{\sigma}$.

Express the "shape" of Young diagrams in terms of characters, e.g. for all k, the function λ → ∑(λ_i − i)^k is a linear combination of characters. One can find its asymptotics using 1.

We extended this strategy to q/α -Plancherel measure.

Difficulties: manipulate the analogues of characters in step 1, find the good functionals of the shape for step 2, ... Needed new ideas (e.g. multivariate Stein's method)

Motto: algebra gives tractable probabilistic models.

V. Féray (CNRS, IECL)

Soutenance d'HDR

Part 2 Weighted dependency graphs

(co-authors: J. Dousse, P.-L. Méliot, A. Nikeghbali)

Consider some sequence of random variables X_n , typically the number of substructures of a given type in a random object.

- number of triangles in random graphs;
- number of exceedances (*i* s.t. $\sigma(i) \ge i$) in permutations;

...

Consider some sequence of random variables X_n , typically the number of substructures of a given type in a random object.

Goal: prove that X_n is asymptotically normal, i.e., as $n \to +\infty$ $\frac{X_n - \mathbb{E}[X_n]}{\sqrt{Var(X_n)}} \xrightarrow{d} \mathcal{N}(0, 1).$

Main methods:

- analytic method: Flajolet, Sedgewick, Hwang, ...
- moment/cumulant method: Janson, Mikhailov, ...
- Stein's method: Stein, Chen, Barbour, ...

Consider some sequence of random variables X_n , typically the number of substructures of a given type in a random object.

Goal: prove that X_n is asymptotically normal, i.e., as $n \to +\infty$ $\frac{X_n - \mathbb{E}[X_n]}{\sqrt{Var(X_n)}} \xrightarrow{d} \mathcal{N}(0, 1).$

Main methods:

- analytic method: Flajolet, Sedgewick, Hwang, ...
- moment/cumulant method: Janson, Mikhailov, ...
- Stein's method: Stein, Chen, Barbour, ...

We will present (weighted) dependency graphs, which are based on the moment method.

Dependency graphs

Definition (Malyshev, '80, Petrovskaya/Leontovich, '82, Janson, '88) A graph L with vertex set A is a dependency graph for the family $\{Y_{\alpha}, \alpha \in A\}$ if the following holds for any $A_1, A_2 \subset A$:

between A_1 and A_2

there is no edge $\{Y_{\alpha}, \alpha \in A_1\}$ and $\{Y_{\alpha}, \alpha \in A_2\}$ are independent

Dependency graphs

Definition (Malyshev, '80, Petrovskaya/Leontovich, '82, Janson, '88) A graph *L* with vertex set *A* is a dependency graph for the family $\{Y_{\alpha}, \alpha \in A\}$ if the following holds for any $A_1, A_2 \subset A$:

there is no edge between A_1 and A_2

$$\{Y_{\alpha}, \alpha \in A_1\}$$
 and $\{Y_{\alpha}, \alpha \in A_2\}$
are independent

Example

L is a dependency graph for
$$\{Y_1, ..., Y_7\}$$

 \downarrow
 Y_1 is independent from Y_4 , Y_5 , Y_6 and Y_7
 $\{Y_1, Y_2\}$ and $\{Y_4, Y_6, Y_7\}$ are independent

Triangles in Erdős-Rényi random graphs

Erdös-Rényi model of random graphs G(n, p):

- G has n vertices labelled 1,...,n;
- each pair {*i*, *j*} is an edge of *G* with probability *p*, and these events are independent from each other.

Triangles in Erdős-Rényi random graphs

Erdös-Rényi model of random graphs G(n, p):

- G has n vertices labelled 1,...,n;
- each pair {*i*, *j*} is an edge of *G* with probability *p*, and these events are independent from each other.

Example of dependency graph

We set $Y_{\{i,j,k\}} = 1$ if *G* contains the triangle $\{i,j,k\}$ and 0 otherwise. Two *Y* variables are independent unless the corresponding triangles share an edge. We can encode this in a dependency graph L_n where $\{i,j,k\}$ is linked to $\{i',j',k'\}$ if they have 2 elements (i.e. vertices) in common.

Triangles in Erdős-Rényi random graphs

Erdös-Rényi model of random graphs G(n, p):

- G has n vertices labelled 1,...,n;
- each pair {*i*, *j*} is an edge of *G* with probability *p*, and these events are independent from each other.

Example of dependency graph

We set $Y_{\{i,j,k\}} = 1$ if *G* contains the triangle $\{i,j,k\}$ and 0 otherwise. Two *Y* variables are independent unless the corresponding triangles share an edge. We can encode this in a dependency graph L_n where $\{i,j,k\}$ is linked to $\{i',j',k'\}$ if they have 2 elements (i.e. vertices) in common.

Claim: L_n is regular with degree 3(n-3).

Janson's normality criterion

Setting: for each n,

- let $\{Y_{n,i}, 1 \le i \le N_n\}$ be unif. bounded random variables; $|Y_{n,i}| < M$ a.s.
- we have a dependency graph L_n with maximal degree $D_n 1$.
- we set $X_n = \sum_{i=1}^{N_n} Y_{n,i}$ and $\sigma_n^2 = \operatorname{Var}(X_n)$.

Janson's normality criterion

Setting: for each n,

- let $\{Y_{n,i}, 1 \le i \le N_n\}$ be unif. bounded random variables; $|Y_{n,i}| < M$ a.s.
- we have a dependency graph L_n with maximal degree $D_n 1$.
- we set $X_n = \sum_{i=1}^{N_n} Y_{n,i}$ and $\sigma_n^2 = \operatorname{Var}(X_n)$.

Theorem (Janson, 1988) Assume that $\left(\frac{N_n}{D_n}\right)^{1/s} \frac{D_n}{\sigma_n} \to 0$ for some integer s. Then X_n is asymptotically normal.

Janson's normality criterion

Setting: for each n,

- let $\{Y_{n,i}, 1 \le i \le N_n\}$ be unif. bounded random variables; $|Y_{n,i}| < M$ a.s.
- we have a dependency graph L_n with maximal degree $D_n 1$.
- we set $X_n = \sum_{i=1}^{N_n} Y_{n,i}$ and $\sigma_n^2 = \operatorname{Var}(X_n)$.

Theorem (Janson, 1988) Assume that $\left(\frac{N_n}{D_n}\right)^{1/s} \frac{D_n}{\sigma_n} \to 0$ for some integer s. Then X_n is asymptotically normal.

Example: For triangles in G(n, p)

$$N_n = \Theta(n^3), D_n = \Theta(n) \text{ and } \sigma_n = \Theta(n^2),$$

so that asymptotic normality of the number of triangles follows.

Models with "weak dependencies"

In many models, we do not have independence, but only *weak* dependencies:

- subword occurrences in a text generated by a Markovian source;
- Subgraph counts in random graphs with fixed number of edges;
- number of exceedances (*i* s.t. $\sigma(i) \ge i$) in a uniform random 3 permutation;
- patterns in multiset permutations and set partitions, ...;
- spins or patterns of spins in Ising model.

Models with "weak dependencies"

In many models, we do not have independence, but only *weak* dependencies:

- subword occurrences in a text generated by a Markovian source;
- Subgraph counts in random graphs with fixed number of edges;
- **③** number of exceedances (*i* s.t. $\sigma(i) \ge i$) in a uniform random permutation;
- patterns in multiset permutations and set partitions, ...;
- spins or patterns of spins in Ising model.

What I did: extend the notion of dependency graphs and Janson's normality criterion, to cover the above frameworks.

Models with "weak dependencies"

In many models, we do not have independence, but only *weak dependencies*:

- subword occurrences in a text generated by a Markovian source;
- subgraph counts in random graphs with fixed number of edges;
- number of exceedances (*i* s.t. $\sigma(i) \ge i$) in a uniform random permutation;
- 9 patterns in multiset permutations and set partitions, ...;
- Spins or patterns of spins in Ising model.

What I did: extend the notion of dependency graphs and Janson's normality criterion, to cover the above frameworks.

Note: existing theories, such as mixing, work well for models with a spatial structure (1 and 5 in the list); some specific approaches have been developed for 2 and 3.

V. Féray (CNRS, IECL)

Soutenance d'HDR

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge (weight $0 \equiv$ no edge).

Definition (F., '18)

Fix $C = (C_r)_{r \ge 1}$. A weighted graph \widetilde{L} with vertex set A is a C-weighted dependency graph for the family $\{Y_{\alpha}, \alpha \in A\}$ if, for any $\alpha_1, \ldots, \alpha_r$ in A,

 $\left|\kappa(Y_{\alpha_1},\cdots,Y_{\alpha_r})\right| \leq C_r \mathcal{M}(\widetilde{L}[\alpha_1,\cdots,\alpha_r]).$

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge (weight $0 \equiv$ no edge).

Definition (F., '18)

Fix $C = (C_r)_{r \ge 1}$. A weighted graph \tilde{L} with vertex set A is a C-weighted dependency graph for the family $\{Y_{\alpha}, \alpha \in A\}$ if, for any $\alpha_1, \ldots, \alpha_r$ in A,

$$\left|\kappa(Y_{\alpha_1},\cdots,Y_{\alpha_r})\right| \leq C_r \mathcal{M}(\widetilde{L}[\alpha_1,\cdots,\alpha_r]).$$

 $\kappa(Y_{\alpha_1}, \cdots, Y_{\alpha_r})$: mixed cumulants

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge (weight $0 \equiv$ no edge).

Definition (F., '18)

Fix $C = (C_r)_{r \ge 1}$. A weighted graph \widetilde{L} with vertex set A is a C-weighted dependency graph for the family $\{Y_{\alpha}, \alpha \in A\}$ if, for any $\alpha_1, \ldots, \alpha_r$ in A,

$$|\kappa(Y_{\alpha_1},\cdots,Y_{\alpha_r})| \leq C_r \mathcal{M}(\widetilde{L}[\alpha_1,\cdots,\alpha_r]).$$

 $\kappa(Y_{\alpha_1}, \dots, Y_{\alpha_r})$: mixed cumulants $\widetilde{L}[\alpha_1, \dots, \alpha_r]$: graph induced by \widetilde{L} on vertices $\alpha_1, \dots, \alpha_r$.

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge (weight $0 \equiv$ no edge).

Definition (F., '18)

Fix $C = (C_r)_{r \ge 1}$. A weighted graph \tilde{L} with vertex set A is a C-weighted dependency graph for the family $\{Y_{\alpha}, \alpha \in A\}$ if, for any $\alpha_1, \ldots, \alpha_r$ in A,

$$\left|\kappa(Y_{\alpha_1},\cdots,Y_{\alpha_r})\right| \leq C_r \mathcal{M}(\widetilde{L}[\alpha_1,\cdots,\alpha_r]).$$

 $\kappa(Y_{\alpha_1}, \dots, Y_{\alpha_r})$: mixed cumulants $\widetilde{L}[\alpha_1, \dots, \alpha_r]$: graph induced by \widetilde{L} on vertices $\alpha_1, \dots, \alpha_r$.

 $\mathcal{M}(K)$: Maximum weight of a spanning tree of K (= product of the edge weights; ε^2 in the example).

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge (weight $0 \equiv$ no edge).

Definition (F., '18)

Fix $C = (C_r)_{r \ge 1}$. A weighted graph \tilde{L} with vertex set A is a C-weighted dependency graph for the family $\{Y_{\alpha}, \alpha \in A\}$ if, for any $\alpha_1, \ldots, \alpha_r$ in A,

 $|\kappa(Y_{\alpha_1},\cdots,Y_{\alpha_r})| \leq C_r \mathcal{M}(\widetilde{L}[\alpha_1,\cdots,\alpha_r]).$

Intuition: the smaller the edge weights are, the smaller the cumulant should be. The edge weights quantify the dependencies between variables.

(Known fact: mixed cumulants of independent r.v. vanish.)

A normality criterion for weighted dependency graphs

Setting: for each n,

- $\{Y_{n,i}, 1 \le i \le N_n\}$ be unif. bounded random variables; $|Y_{n,i}| < M$ a.s.
- we have a C-weighted dependency graph \tilde{L}_n with weighted maximal degree $D_n 1$ (with a sequence $C = (C_r)_{r \ge 1}$ independent of n).

• we set
$$X_n = \sum_{i=1}^{N_n} Y_{n,i}$$
 and $\sigma_n^2 = \operatorname{Var}(X_n)$.

Theorem (F., '18) Assume that $\left(\frac{N_n}{D_n}\right)^{1/s} \frac{D_n}{\sigma_n} \to 0$ for some integer s. Then X_n is asymptotically normal.

A normality criterion for weighted dependency graphs

Setting: for each n,

- $\{Y_{n,i}, 1 \le i \le N_n\}$ be unif. bounded random variables; $|Y_{n,i}| < M$ a.s.
- we have a C-weighted dependency graph \tilde{L}_n with weighted maximal degree $D_n 1$ (with a sequence $C = (C_r)_{r \ge 1}$ independent of n).

• we set
$$X_n = \sum_{i=1}^{N_n} Y_{n,i}$$
 and $\sigma_n^2 = \operatorname{Var}(X_n)$.

Theorem (F., '18) Assume that $\left(\frac{N_n}{D_n}\right)^{1/s} \frac{D_n}{\sigma_n} \to 0$ for some integer s. Then X_n is asymptotically normal.

Next few slides: an example of application.

Patterns in set-partitions

We think at partitions as arch systems, e.g. $\{1,3,4\},\{2,5\}$ is

Definition (Chern, Diaconis, Kane, Rhodes, '14)

An occurrence of a set-partition \mathscr{A} of size ℓ in another set-partition π is a list (i_1, \ldots, i_ℓ) s.t. (i_j, i_k) is an arch of π whenever (j, k) is an arch of \mathscr{A} .

Example: an occurrence of $\{1, 3, 4\}, \{2, 5\}$

Patterns in set-partitions

We think at partitions as arch systems, e.g. $\{1,3,4\},\{2,5\}$ is

Definition (Chern, Diaconis, Kane, Rhodes, '14)

An occurrence of a set-partition \mathscr{A} of size ℓ in another set-partition π is a list (i_1, \ldots, i_ℓ) s.t. (i_j, i_k) is an arch of π whenever (j, k) is an arch of \mathscr{A} .

Background:

- standard well-studied examples: crossings, nestings, *k*-crossings, *k*-nestings;
- Chern, Diaconis, Kane and Rhodes proved the asymptotic normality of the number of crossings ('15).

A weighted dependency graph for set-partitions

Let π be a uniform random set-partition of size n and $\mathbf{1}[ij]$ be the indicator variable of the arc $\{i, j\}$ $(1 \le i < j \le n)$.

Proposition (F., 19)

The complete graph with weights

$$w(\mathbf{1}[\widehat{ij}], \mathbf{1}[\widehat{i'j'}]) = \begin{cases} 1 & \text{if } i = i' \text{ or } j = j'; \\ 1/n & \text{otherwise.} \end{cases}$$

is a weighted dependency graph for the family $\{\mathbf{1}[ij], i < j\}$.

Asymptotic normality of pattern counts in set partitions

Using a general stability property of weighted-dependency graphs, we get: Proposition (F., '19)

Fix a pattern \mathscr{A} . Let $\mathbf{1}[\pi_I = \mathscr{A}]$ be the indicator of having the pattern \mathscr{A} at position I. Then this family of r.v. has a weighted dependency graph with weights

$$w(\mathbf{1}[\pi_{I} = \mathscr{A}], \mathbf{1}[\pi_{I'} = \mathscr{A}]) = \begin{cases} 1 & \text{if } I \cap I' \neq \emptyset; \\ 1/n & \text{otherwise.} \end{cases}$$

Asymptotic normality of pattern counts in set partitions

Using a general stability property of weighted-dependency graphs, we get: Proposition (F., '19)

Fix a pattern \mathscr{A} . Let $\mathbf{1}[\pi_I = \mathscr{A}]$ be the indicator of having the pattern \mathscr{A} at position I. Then this family of r.v. has a weighted dependency graph with weights

$$w(\mathbf{1}[\pi_I = \mathscr{A}], \mathbf{1}[\pi_{I'} = \mathscr{A}]) = \begin{cases} 1 & \text{if } I \cap I' \neq \emptyset; \\ 1/n & \text{otherwise.} \end{cases}$$

Using (a generalization of) the above normality criterion, we get

Corollary (F., '19, wide generalization of CDKR'14)

For any pattern \mathcal{A} , the number $X_n^{\mathcal{A}}$ of occurrences of \mathcal{A} in a uniform random set-partition π of [n] is asymptotically normal.

V. Féray (CNRS, IECL)

Part 3

Brownian limits for random permutations

(co-authors: F. Bassino, J. Borga, M. Bouvel, M. Drmota L. Gerin, M. Maazoun, A. Pierrot, B. Stufler)

• In the previous part, we considered the number of copies of a given subconfiguration in a uniform random object (subgraphs in random graphs, patterns in random set partitions, ...).

- In the previous part, we considered the number of copies of a given subconfiguration in a uniform random object (subgraphs in random graphs, patterns in random set partitions, ...).
- A parallel line of research consists in studying a random object conditioned to avoid a given subconfiguration
 - classical models of this kind: self-avoiding walks, planar graphs, ...
 - in the last decade: emerging literature on random pattern-avoiding permutations.

- In the previous part, we considered the number of copies of a given subconfiguration in a uniform random object (subgraphs in random graphs, patterns in random set partitions, ...).
- A parallel line of research consists in studying a random object conditioned to avoid a given subconfiguration
 - classical models of this kind: self-avoiding walks, planar graphs, ...
 - in the last decade: emerging literature on random pattern-avoiding permutations.

Such *constrained models* are in general very hard. A good situation is when we have a constructive way to describe the objects. Substitution operations may provide such constructive way.

Substitution operation and simple permutations

Substitution operation and simple permutations

256143

Substitution operation and simple permutations

Definition

A permutation is called simple if it cannot be written as substitution of smaller permutations.

Our problem

- We consider a set of permutations \mathscr{C} defined by the avoidance of some substructures (= patterns) and containing finitely many simple permutations;
- For each *n*, let σ_n be a uniform random permutation of size *n* in \mathscr{C} ;
- What is the "limit of the diagram" of σ_n ?

Our problem

- We consider a set of permutations \mathscr{C} defined by the avoidance of some substructures (= patterns) and containing finitely many simple permutations;
- For each *n*, let σ_n be a uniform random permutation of size *n* in \mathscr{C} ;
- What is the "limit of the diagram" of σ_n ?

Note: the limit is in the sense of "permuton"; roughly, we see a permutation as a probability measure on $[0,1]^2$

$$\sigma \leftrightarrow \frac{1}{n} \sum_{i=1}^{n} \delta_{(i/n, \sigma(i)/n)}$$

and we use the notion of weak convergence of measures.

A dichotomy result

Theorem (Bassino, Bouvel, F., Gerin, Maazoun, Pierrot, '19) In the setting of the previous slide, under an additional technical condition, σ_n converges

- either to a so-called X-permuton;
- or to a so-called Brownian separable permuton.

A dichotomy result

Theorem (Bassino, Bouvel, F., Gerin, Maazoun, Pierrot, '19) In the setting of the previous slide, under an additional technical condition, σ_n converges

- either to a so-called X-permuton;
- or to a so-called Brownian separable permuton.

Simulations of large random permutations in classes with finitely many simple permutations.

V. Féray (CNRS, IECL)

Soutenance d'HDR

Some perspectives

- Analyze algebraic models of random tableaux (= sequences of growing Young diagrams); i.e. we aim at increasing the dimension of the model (adding time).
- On weighted dependency graphs:
 - more applications: e.g. patterns in conjugacy classes of permutations;
 - example coming from determinantal point processes.
- Selated to random constrained permutations:
 - consider other combinatorial objects (we have some results for graph classes);
 - look for convergence laws for permutations in classes.

That's all folks!

Thank you for your attention!