
On random combinatorial structures:
partitions, permutations and asymptotic normality

Valentin Féray
Habilitation à diriger les recherches

CNRS, Université de Lorraine

Nancy, 21 septembre 2021

V. Féray (CNRS, IECL) Soutenance d’HDR Nancy, 2021–09 1 / 28



Introduction

My research field(s)

Algebraic combinatorics: symmetric group representations, symmetric
functions, . . . with a bias towards formulas suited for asymptotic
analysis.

Probabilistic combinatorics: random partitions (integer and set
partitions), permutations, and graphs.

In my habiliation thesis:

1 Algebraic models of random partitions;

2 Weighted dependency graphs;

3 Universal limits for random pattern-avoiding permutations.
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Transition

Part 1
Algebraic models of random partitions

(co-authors: M. Dołęga, P.-L. Méliot)
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Algebraic models of random partitions

Partitions

Definition
An integer partition (or partition for short) is a non-increasing list
λ= (λ1, · · · ,λ`) of positive integers. Its size is |λ| :=λ1+·· ·+λ`.

It is customary to represent a partition λ= (λ1, . . .λ`) by a Young diagram:

(7,4,3,3,2)
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Algebraic models of random partitions

Plancherel measure
A Young tableaux of shape λ is a filling of λ with
numbers from 1 to n with increasing rows and
columns.

Let dim(λ) be the number of Young tableaux of
shape λ. It is the dimension of the irreducible rep-
resentation of Sn associated with λ.

7 12

4 9 10 15

2 5 8 14

1 3 6 11 13

Definition
The Plancherel measure for Symn (or Plancherel measure for short) is the
probability measure PPl on the set of partitions of n such that for any
partition λ of n, we have

PPl(λ)= 1
n!(dim(λ))2.

Well studied since the ’60es/’70es (Ulam, Hammersley, Vershik–Kerov,
Logan–Shepp, Baik–Deift–Johansson, Borodin–Okounkov–Olshanski, . . . )
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Algebraic models of random partitions

Limit results

Theorem (Logan–Shepp ’77/Kerov–Vershik ’77)

For each n≥ 1, let λn be a random Young diagram of size n, distributed
with Plancherel measure. Then, after rescaling in both directions to have
area 1, λn converges to an explicit limit shape Ω.

A central limit theorem for functionals F (λn) was given later by Kerov
(’93).
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Algebraic models of random partitions

Limit results – an illustration

©Notices of the AMS, Feb. 2011, front cover.
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Algebraic models of random partitions

Two generalizations of Plancherel measure

q-Plancherel measure linked to Hecke algebras (Kerov ’92, Strahov
’08)

Simulation for q = 1/2 (and n= 200)

α-Plancherel measure linked to Jack polynomials (Kerov ’00, Fulman
’04, . . . )

Simulation for α= 1/3 (and n= 500)
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Algebraic models of random partitions

Limit results

Theorem (F. – Méliot ’12)

Fix q < 1 and let λn be a random Young diagram of size n, distributed with
q-Plancherel measure. Then, for each i ≥ 1, the quantity λn

i /n
(renormalized length of the i-th row of λn) converges in probability to
(1−q)qi−1.

Theorem (Dołęga – F. ’16)

Fix α> 0, and let λn be a random Young diagram of size n, distributed
with α-Plancherel measure. Then, after rescaling rows by a factor

p
αn and

columns by
√

n
α , the diagram λn converges to the same limit shape Ω as

for α= 1.

We also have central limit theorems for functionals F (λn) in both cases.
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Algebraic models of random partitions

Proof strategy (following Kerov ’93, Ivanov–Olshanski ’03)

1 We consider character values of the symmetric group:

χσ(λ) :=
Tr[ρλ(σ)]

dim(λ)
Easy lemma: E[χσ]= 0 unless σ= id.
With some work (to compute higher moments), one can find the
asymptotic behaviour of χσ.

2 Express the “shape” of Young diagrams in terms of characters, e.g. for
all k , the function λ 7→∑

(λi − i)k is a linear combination of characters.
One can find its asymptotics using 1.

We extended this strategy to q/α-Plancherel measure.
Difficulties: manipulate the analogues of characters in step 1, find the good
functionals of the shape for step 2, . . . Needed new ideas (e.g. multivariate
Stein’s method)

Motto: algebra gives tractable probabilistic models.
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Transition

Part 2
Weighted dependency graphs

(co-authors: J. Dousse, P.-L. Méliot, A. Nikeghbali)
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Weighted dependency graphs Classical dependency graphs

Context

Consider some sequence of random variables Xn, typically the number of
substructures of a given type in a random object.

number of triangles in random graphs;
number of exceedances (i s.t. σ(i)≥ i) in permutations;
. . .

Goal: prove that Xn is asymptotically normal, i.e., as n→+∞
Xn−E[Xn]√
Var(Xn)

d→N (0,1).

Main methods:
analytic method: Flajolet, Sedgewick, Hwang, . . .
moment/cumulant method: Janson, Mikhailov, . . .
Stein’s method: Stein, Chen, Barbour, . . .

We will present (weighted) dependency graphs, which are based on the
moment method.
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Weighted dependency graphs Classical dependency graphs

Dependency graphs

Definition (Malyshev, ’80, Petrovskaya/Leontovich, ’82, Janson, ’88)

A graph L with vertex set A is a dependency graph for the family
{Yα,α ∈A} if the following holds for any A1,A2 ⊂A:

there is no edge
between A1 and A2

=⇒ {Yα,α ∈A1} and {Yα,α ∈A2}
are independent

Example

L=
1

2

3
4

5

6

7

L is a dependency graph for {Y1, . . . ,Y7}
⇓

Y1 is independent from Y4, Y5, Y6 and Y7
{Y1,Y2} and {Y4,Y6,Y7} are independent

. . .
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Weighted dependency graphs Classical dependency graphs

Triangles in Erdős-Rényi random graphs

Erdös-Rényi model of random graphs G (n,p):
G has n vertices labelled 1,. . . ,n;
each pair {i , j} is an edge of G with
probability p, and these events are
independent from each other.

1
2

3

4

5
6

7

8

Example of dependency graph
We set Y{i ,j ,k} = 1 if G contains the triangle {i , j ,k} and 0 otherwise. Two Y
variables are independent unless the corresponding triangles share an edge.
We can encode this in a dependency graph Ln where {i , j ,k} is linked to
{i ′, j ′,k ′} if they have 2 elements (i.e. vertices) in common.

Claim: Ln is regular with degree 3(n−3).
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Weighted dependency graphs Classical dependency graphs

Janson’s normality criterion

Setting: for each n,
let {Yn,i ,1≤ i ≤Nn} be unif. bounded random variables; |Yn,i | <M a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (Janson, 1988)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s.
Then Xn is asymptotically normal.

Example: For triangles in G (n,p)

Nn =Θ(n3), Dn =Θ(n) and σn =Θ(n2),

so that asymptotic normality of the number of triangles follows.
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Weighted dependency graphs Generalities

Models with "weak dependencies"

In many models, we do not have independence, but only weak
dependencies:

1 subword occurrences in a text generated by a Markovian source;
2 subgraph counts in random graphs with fixed number of edges;
3 number of exceedances (i s.t. σ(i)≥ i) in a uniform random

permutation;
4 patterns in multiset permutations and set partitions, . . . ;
5 spins or patterns of spins in Ising model.

What I did: extend the notion of dependency graphs and Janson’s
normality criterion, to cover the above frameworks.

Note: existing theories, such as mixing, work well for models with a spatial
structure (1 and 5 in the list); some specific approaches have been
developed for 2 and 3.
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Weighted dependency graphs Generalities

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0≡ no edge).

Definition (F., ’18)

Fix C = (Cr )r≥1. A weighted graph L̃ with vertex set A is a C -weighted
dependency graph for the family {Yα,α ∈A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣≤Cr M
(
L̃[α1, · · · ,αr ]

)
.
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(
L̃[α1, · · · ,αr ]

)
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κ(Yα1 , · · · ,Yαr ): mixed cumulants

L̃[α1, · · · ,αr ]: graph induced by L̃ on
vertices α1, · · · ,αr .
M

(
K

)
: Maximum weight of a span-

ning tree of K (= product of the edge
weights; ε2 in the example).

α3 α4

α1 α2

ε2

ε3
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Intuition: the smaller the edge weights are, the smaller the cumulant
should be. The edge weights quantify the dependencies between variables.

(Known fact: mixed cumulants of independent r.v. vanish.)
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Weighted dependency graphs Generalities

A normality criterion for weighted dependency graphs

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} be unif. bounded random variables; |Yn,i | <M a.s.
we have a C -weighted dependency graph L̃n with weighted maximal
degree Dn−1 (with a sequence C = (Cr )r≥1 independent of n).

we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (F., ’18)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s.
Then Xn is asymptotically normal.

Next few slides: an example of application.

V. Féray (CNRS, IECL) Soutenance d’HDR Nancy, 2021–09 18 / 28



Weighted dependency graphs Generalities

A normality criterion for weighted dependency graphs

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} be unif. bounded random variables; |Yn,i | <M a.s.
we have a C -weighted dependency graph L̃n with weighted maximal
degree Dn−1 (with a sequence C = (Cr )r≥1 independent of n).

we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (F., ’18)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s.
Then Xn is asymptotically normal.

Next few slides: an example of application.

V. Féray (CNRS, IECL) Soutenance d’HDR Nancy, 2021–09 18 / 28



Weighted dependency graphs Patterns in set-partitions

Patterns in set-partitions

We think at partitions as arch systems, e.g. {1,3,4}, {2,5} is

1 2 3 4 5

Definition (Chern, Diaconis, Kane, Rhodes, ’14)

An occurrence of a set-partition A of size ` in another set-partition π is a
list (i1, . . . , i`) s.t. (ij , ik) is an arch of π whenever (j ,k) is an arch of A .

Example: an occurrence of {1,3,4}, {2,5}

i1 = 2 i2 = 3 i3 = 7 i4 = 8 i5 = 10
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Patterns in set-partitions

We think at partitions as arch systems, e.g. {1,3,4}, {2,5} is

1 2 3 4 5

Definition (Chern, Diaconis, Kane, Rhodes, ’14)

An occurrence of a set-partition A of size ` in another set-partition π is a
list (i1, . . . , i`) s.t. (ij , ik) is an arch of π whenever (j ,k) is an arch of A .

Background:
standard well-studied examples: crossings, nestings, k-crossings,
k-nestings;
Chern, Diaconis, Kane and Rhodes proved the asymptotic normality of
the number of crossings (’15).
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Weighted dependency graphs Patterns in set-partitions

A weighted dependency graph for set-partitions

Let π be a uniform random set-partition of size n and 1[Øij ] be the indicator
variable of the arc {i , j} (1≤ i < j ≤ n).

Proposition (F., 19)

The complete graph with weights

w
(
1[Øij ],1[ Øi ′j ′ ])={

1 if i = i ′ or j = j ′;
1/n otherwise.

is a weighted dependency graph for the family
{
1[Øij ], i < j

}
.

strongly dependent arcs: weight 1

or

weakly dependent arcs: weight 1/n
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Weighted dependency graphs Patterns in set-partitions

Asymptotic normality of pattern counts in set partitions

Using a general stability property of weighted-dependency graphs, we get:

Proposition (F., ’19)

Fix a pattern A . Let 1[πI =A ] be the indicator of having the pattern A

at position I . Then this family of r.v. has a weighted dependency graph
with weights

w
(
1[πI =A ],1[πI ′ =A ]

)={
1 if I ∩ I ′ 6= ;;
1/n otherwise.

Using (a generalization of) the above normality criterion, we get

Corollary (F., ’19, wide generalization of CDKR’14)

For any pattern A , the number XA
n of occurrences of A in a uniform

random set-partition π of [n] is asymptotically normal.
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Transition

Part 3
Brownian limits for random permutations

(co-authors: F. Bassino, J. Borga, M. Bouvel, M. Drmota
L. Gerin, M. Maazoun, A. Pierrot, B. Stufler)
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Brownian limits for random permutations

Context

In the previous part, we considered the number of copies of a given
subconfiguration in a uniform random object (subgraphs in random
graphs, patterns in random set partitions, . . . ).

A parallel line of research consists in studying a random object
conditioned to avoid a given subconfiguration

classical models of this kind: self-avoiding walks, planar graphs, . . .
in the last decade: emerging literature on random pattern-avoiding
permutations.

Such constrained models are in general very hard. A good situation is when
we have a constructive way to describe the objects. Substitution operations
may provide such constructive way.
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Brownian limits for random permutations

Substitution operation and simple permutations

We see permutations as “diagrams”

Substitution operation on permutations

•

• •

•

• •

256143

2413[132, 21, 1, 12] =

12 =

= 24387156

132

21

1

Definition
A permutation is called simple if it cannot be written as substitution of
smaller permutations.
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Brownian limits for random permutations

Our problem

We consider a set of permutations C defined by the avoidance of
some substructures (= patterns) and containing finitely many simple
permutations;
For each n, let σn be a uniform random permutation of size n in C ;
What is the “limit of the diagram” of σn?

Note: the limit is in the sense of “permuton”; roughly, we see a
permutation as a probability measure on [0,1]2

σ ↔ 1
n

n∑
i=1

δ(i/n, σ(i)/n)

and we use the notion of weak convergence of measures.

V. Féray (CNRS, IECL) Soutenance d’HDR Nancy, 2021–09 25 / 28



Brownian limits for random permutations

Our problem

We consider a set of permutations C defined by the avoidance of
some substructures (= patterns) and containing finitely many simple
permutations;
For each n, let σn be a uniform random permutation of size n in C ;
What is the “limit of the diagram” of σn?

Note: the limit is in the sense of “permuton”; roughly, we see a
permutation as a probability measure on [0,1]2

σ ↔ 1
n

n∑
i=1

δ(i/n, σ(i)/n)

and we use the notion of weak convergence of measures.

V. Féray (CNRS, IECL) Soutenance d’HDR Nancy, 2021–09 25 / 28



Brownian limits for random permutations

A dichotomy result
Theorem (Bassino, Bouvel, F., Gerin, Maazoun, Pierrot, ’19)

In the setting of the previous slide, under an additional technical condition,
σn converges

either to a so-called X -permuton;
or to a so-called Brownian separable permuton.

Simulations of large random permutations in classes
with finitely many simple permutations.

V. Féray (CNRS, IECL) Soutenance d’HDR Nancy, 2021–09 26 / 28



Brownian limits for random permutations

A dichotomy result
Theorem (Bassino, Bouvel, F., Gerin, Maazoun, Pierrot, ’19)

In the setting of the previous slide, under an additional technical condition,
σn converges

either to a so-called X -permuton;
or to a so-called Brownian separable permuton.

Simulations of large random permutations in classes
with finitely many simple permutations.

V. Féray (CNRS, IECL) Soutenance d’HDR Nancy, 2021–09 26 / 28



Perspectives

Some perspectives

1 Analyze algebraic models of random tableaux (= sequences of growing
Young diagrams); i.e. we aim at increasing the dimension of the model
(adding time).

2 On weighted dependency graphs:
more applications: e.g. patterns in conjugacy classes of permutations;
example coming from determinantal point processes.

3 Related to random constrained permutations:
consider other combinatorial objects (we have some results for graph
classes);
look for convergence laws for permutations in classes.
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That’s all folks!

Thank you
for your attention!
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