Increasing subsequences
 in random separable permutations

Valentin Féray
joint work with F. Bassino, M. Bouvel, M. Drmota
L. Gerin, M. Maazoun and A. Pierrot
CNRS, Institut Élie Cartan de Lorraine (IECL)

Permutation Patterns 2021 Virtual Workshop Online, June 15th, 2021.

ELIECARTAN

First main result

Reminder: separable permutations are permutations obtained from 1 by iterating \oplus and \ominus operations. Equivalently they avoid 3142 and 2413.

Theorem
For each $n \geq 1$, let $\sigma_{\boldsymbol{n}}$ be a uniform random separable permutation of size n. Then, the length of the longest increasing subsequence (LIS) in σ_{n} is sublinear in n, i.e. $\frac{\operatorname{LIS}\left(\sigma_{n}\right)}{n}$ converges to 0 in probability.

First main result

Reminder: separable permutations are permutations obtained from 1 by iterating \oplus and \ominus operations. Equivalently they avoid 3142 and 2413.

Theorem

For each $n \geq 1$, let $\sigma_{\boldsymbol{n}}$ be a uniform random separable permutation of size n. Then, the length of the longest increasing subsequence (LIS) in σ_{n} is sublinear in n, i.e. $\frac{\mathrm{LIS}\left(\sigma_{n}\right)}{n}$ converges to 0 in probability.

Motivations:

- LIS is a standard statistics on uniform random permutations; more recently there has been literature on pattern-avoiding permutations.
- We have an analogue result on cographs (inversion graphs of separable permutations), which answers a question about a probabilistic version of Erdős-Hajnal conjecture.
- The proof is interesting!

The first moment method fails!

Natural approach: let $\boldsymbol{Z}_{n, k}$ be the number of increasing subsequences (not necessarily maximal) of length k in σ_{n}.

Hope: if $k=\Theta(n)$, then $\mathbb{E}\left[\boldsymbol{Z}_{n, k}\right]$ tends to 0 . If this holds, then $\boldsymbol{Z}_{n, k}=0$ with high probability, i.e. there is no increasing subsequence of length k.

The first moment method fails!

Natural approach: let $\boldsymbol{Z}_{n, k}$ be the number of increasing subsequences (not necessarily maximal) of length k in $\boldsymbol{\sigma}_{n}$. Hope: if $k=\Theta(n)$, then $\mathbb{E}\left[\boldsymbol{Z}_{n, k}\right]$ tends to 0 . If this holds, then $\boldsymbol{Z}_{n, k}=0$ with high probability, i.e. there is no increasing subsequence of length k.

Theorem (Second main result)
For integers k in $[a n, b n]$ (a, b fixed in $(0,1)$), we have

$$
\begin{equation*}
\mathbb{E}\left[\boldsymbol{Z}_{n, k}\right] \sim D_{k / n} n^{-1 / 2}\left(E_{k / n}\right)^{n}, \tag{1}
\end{equation*}
$$

where $E_{\beta}>1$ for β sufficiently small ($\beta<0.58$ numerically).

The first moment method fails!

Natural approach: let $\boldsymbol{Z}_{n, k}$ be the number of increasing subsequences (not necessarily maximal) of length k in σ_{n}. Hope: if $k=\Theta(n)$, then $\mathbb{E}\left[\boldsymbol{Z}_{n, k}\right]$ tends to 0 . If this holds, then $\boldsymbol{Z}_{n, k}=0$ with high probability, i.e. there is no increasing subsequence of length k.

Theorem (Second main result)
For integers k in $[a n, b n]$ (a, b fixed in $(0,1)$), we have

$$
\begin{equation*}
\mathbb{E}\left[\boldsymbol{Z}_{n, k}\right] \sim D_{k / n} n^{-1 / 2}\left(E_{k / n}\right)^{n}, \tag{1}
\end{equation*}
$$

where $E_{\beta}>1$ for β sufficiently small ($\beta<0.58$ numerically).
Tool: analytic combinatorics. The series

$$
S(z, u)=\sum_{\substack{\sigma \text { s.aparale } \\ \text { J. } / \bar{l} \text { inceasing }}} z^{|\sigma|} u^{|J|}
$$

is the solution of a combinatorial system \rightarrow can be analyzed.

Instead, we use permutons!

We can define a LIS function on permutons:

Instead, we use permutons!

We can define a LIS function on permutons:

permutations σ	permutons $\mu\left(=\right.$ measure on $\left.[0 ; 1]^{2}\right) ;$
subsequence σ / J	submeasure $v \leq \mu ;$
σ / J increasing	$\AA^{\bullet P} \cdot Q \in \operatorname{Supp}(v)$
normalized length $\|J\| / n$	total mass $v\left([0 ; 1]^{2}\right)$

Definition (Maréchal, '21)
$\widetilde{\mathrm{LIS}}(\mu):=\sup _{v \leq \mu, v \text { "increasing" }} v\left([0 ; 1]^{2}\right)$.
It extends the map $\sigma \mapsto \widetilde{\mathrm{LIS}}(\sigma):=\operatorname{LIS}(\sigma) / n$ to permutons.
Proposition
$\widetilde{\mathrm{LIS}}$ is lower semi-continuous, i.e. if $\mu_{k} \rightarrow \mu$, then limsup $\widetilde{\mathrm{LIS}}\left(\mu_{k}\right) \leq \widetilde{\mathrm{LIS}}(\mu)$.

Instead, we use permutons!

Reminder (from previous slide)
$\widetilde{\mathrm{LIS}}$ is lower semi-continuous, i.e. if $\mu_{k} \rightarrow \mu$, then limsup $\widetilde{\mathrm{LIS}}\left(\mu_{k}\right) \leq \widetilde{\mathrm{LIS}}(\mu)$.

Instead, we use permutons!

Reminder (from previous slide)
$\widetilde{\mathrm{LIS}}$ is lower semi-continuous, i.e. if $\mu_{k} \rightarrow \mu$, then limsup $\widetilde{\mathrm{LIS}}\left(\mu_{k}\right) \leq \widetilde{\mathrm{LIS}}(\mu)$.

Our goal is to prove $\widetilde{\mathrm{LIS}}\left(\sigma_{n}\right) \rightarrow 0$.
Reminder (from Lucas Gerin's talk)
σ_{n} converges to the Brownian separable permuton $\mu_{1 / 2}$.
It's enough to prove $\widetilde{\operatorname{LIS}}\left(\boldsymbol{\mu}_{1 / 2}\right)=0$.

Instead, we use permutons!

Reminder (from previous slide)
$\widetilde{\mathrm{LIS}}$ is lower semi-continuous, i.e. if $\mu_{k} \rightarrow \mu$, then limsup $\widetilde{\mathrm{LIS}}\left(\mu_{k}\right) \leq \widetilde{\mathrm{LIS}}(\mu)$.

Our goal is to prove $\widetilde{\mathrm{LIS}}\left(\sigma_{n}\right) \rightarrow 0$.
Reminder (from Lucas Gerin's talk)
σ_{n} converges to the Brownian separable permuton $\mu_{1 / 2}$.
It's enough to prove $\widetilde{\operatorname{LIS}}\left(\boldsymbol{\mu}_{1 / 2}\right)=0$.
We do it using a self-similarity property of the Brownian excursion...

