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First main result

Reminder: separable permutations are permutations obtained from 1 by
iterating ⊕ and ª operations. Equivalently they avoid 3142 and 2413.

Theorem

For each n≥ 1, let σn be a uniform random separable permutation of size
n. Then, the length of the longest increasing subsequence (LIS) in σn is
sublinear in n, i.e. LIS(σn)

n converges to 0 in probability.

Motivations:
LIS is a standard statistics on uniform random permutations; more
recently there has been literature on pattern-avoiding permutations.
We have an analogue result on cographs (inversion graphs of separable
permutations), which answers a question about a probabilistic version
of Erdős-Hajnal conjecture.
The proof is interesting!
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The first moment method fails!

Natural approach: let Zn,k be the number of increasing subsequences (not
necessarily maximal) of length k in σn.

Hope: if k =Θ(n), then E[Zn,k ] tends to 0. If this holds, then Zn,k = 0 with
high probability, i.e. there is no increasing subsequence of length k .

Theorem (Second main result)

For integers k in [an,bn] (a,b fixed in (0,1)), we have

E[Zn,k ]∼Dk/n n
−1/2(Ek/n)n, (1)

where Eβ > 1 for β sufficiently small (β< 0.58 numerically).

Tool: analytic combinatorics. The series
S(z ,u)= ∑

σ separable
J:σ/J increasing

z |σ|u|J |

is the solution of a combinatorial system → can be analyzed.
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Instead, we use permutons!

We can define a LIS function on permutons:

permutations σ permutons µ (=measure on [0;1]2);
subsequence σ/J submeasure ν≤µ;
σ/J increasing 6 ∃ P

Q ∈ Supp(ν)
normalized length |J |/n total mass ν([0;1]2)

Definition (Maréchal, ’21)

L̃IS(µ) := sup
ν≤µ,ν “increasing”

ν([0;1]2).

It extends the map σ 7→ L̃IS(σ) := LIS(σ)/n to permutons.

Proposition

L̃IS is lower semi-continuous, i.e. if µk →µ, then limsup L̃IS(µk)≤ L̃IS(µ).
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Instead, we use permutons!

Reminder (from previous slide)

L̃IS is lower semi-continuous, i.e. if µk →µ, then limsup L̃IS(µk)≤ L̃IS(µ).

Our goal is to prove L̃IS(σn)→ 0.

Reminder (from Lucas Gerin’s talk)

σn converges to the Brownian separable permuton µ1/2.

It’s enough to prove L̃IS(µ1/2)= 0.

We do it using a self-similarity property of the Brownian excursion. . .
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