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Number of triangles in a random graph The cumulant method

A problem in random graphs

Erdős-Rényi model of random graphs G (n, p):

G has n vertices labelled 1,. . . ,n;

each edge {i , j} is taken independently
with probability p;
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Example : n = 8, p = 1/2
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A problem in random graphs

Erdős-Rényi model of random graphs G (n, p):

G has n vertices labelled 1,. . . ,n;

each edge {i , j} is taken independently
with probability p;
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Example : n = 8, p = 1/2

Question

Fix p ∈]0; 1[.
Describe asymptotically the fluctuations of the number Tn of triangles.
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A problem in random graphs

Erdős-Rényi model of random graphs G (n, p):

G has n vertices labelled 1,. . . ,n;

each edge {i , j} is taken independently
with probability p;
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Example : n = 8, p = 1/2

Question

Fix p ∈]0; 1[.
Describe asymptotically the fluctuations of the number Tn of triangles.

Answer (Rucińsky, 1988)

The fluctuations are asymptotically Gaussian.
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Number of triangles in a random graph The cumulant method

Outline

1 Intro: cumulant method for number of triangles in G (n, p)

2 First extension: stronger conclusion

3 Second extension: weaker hypothesis

4 Ideas of proof
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Number of triangles in a random graph The cumulant method

A good tool for that: mixed cumulants

the r -th mixed cumulant κr of r random variables is a specific r -linear
symmetric polynomial in joint moments. Examples:

κ1(X ) := E(X ), κ2(X ,Y ) := Cov(X ,Y ) = E(XY )− E(X )E(Y )

κ3(X ,Y ,Z ) := E(XYZ )− E(XY )E(Z )− E(XZ )E(Y )

− E(YZ )E(X ) + 2E(X )E(Y )E(Z ).

Not. κℓ(X ) := κℓ(X , . . . ,X ) = E(X ℓ) + . . .
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A good tool for that: mixed cumulants

the r -th mixed cumulant κr of r random variables is a specific r -linear
symmetric polynomial in joint moments. Examples:

κ1(X ) := E(X ), κ2(X ,Y ) := Cov(X ,Y ) = E(XY )− E(X )E(Y )

κ3(X ,Y ,Z ) := E(XYZ )− E(XY )E(Z )− E(XZ )E(Y )

− E(YZ )E(X ) + 2E(X )E(Y )E(Z ).

Not. κℓ(X ) := κℓ(X , . . . ,X ) = E(X ℓ) + . . .

if the variables can be split in two mutually independent sets, then the
cumulant vanishes.
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Number of triangles in a random graph The cumulant method

A good tool for that: mixed cumulants

the r -th mixed cumulant κr of r random variables is a specific r -linear
symmetric polynomial in joint moments. Examples:

κ1(X ) := E(X ), κ2(X ,Y ) := Cov(X ,Y ) = E(XY )− E(X )E(Y )

κ3(X ,Y ,Z ) := E(XYZ )− E(XY )E(Z )− E(XZ )E(Y )

− E(YZ )E(X ) + 2E(X )E(Y )E(Z ).

Not. κℓ(X ) := κℓ(X , . . . ,X ) = E(X ℓ) + . . .

if the variables can be split in two mutually independent sets, then the
cumulant vanishes.

if, for each r 6= 2, the sequence κr (Xn) converges towards 0 and if
Var(Xn) has a limit, then Xn converges in distribution towards a
Gaussian law.
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Number of triangles in a random graph The cumulant method

Application to the number of triangles

Tn =
∑

∆={i ,j ,k}⊂[n]

B∆, where B∆(G ) =

{
1 if G contains the triangle ∆;

0 otherwise.
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Number of triangles in a random graph The cumulant method

Application to the number of triangles

Tn =
∑

∆={i ,j ,k}⊂[n]

B∆, where B∆(G ) =

{
1 if G contains the triangle ∆;

0 otherwise.

By multilinearity, κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).
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Number of triangles in a random graph The cumulant method

Application to the number of triangles

Tn =
∑

∆={i ,j ,k}⊂[n]

B∆, where B∆(G ) =

{
1 if G contains the triangle ∆;

0 otherwise.

By multilinearity, κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

But most of the terms vanish (because the variables are independent).
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Number of triangles in a random graph The cumulant method

Application to the number of triangles

Tn =
∑

∆={i ,j ,k}⊂[n]

B∆, where B∆(G ) =

{
1 if G contains the triangle ∆;

0 otherwise.

By multilinearity, κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

But most of the terms vanish (because the variables are independent).

Example:

∆1

∆7

∆5

∆2
∆6

∆3

∆4

13
8

3

11

5

2

7

23

9

1

19

κℓ(B∆1
, . . . ,B∆7

) = 0.

{∆1,∆2,∆5,∆7} is indepen-
dent from {∆3,∆4,∆6}.
Reminder: presence of different
edges are independent events.
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Number of triangles in a random graph The cumulant method

Application to the number of triangles

Tn =
∑

∆={i ,j ,k}⊂[n]

B∆, where B∆(G ) =

{
1 if G contains the triangle ∆;

0 otherwise.

By multilinearity, κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

But most of the terms vanish (because the variables are independent).

Example:

∆1

∆7

∆5

∆2
∆6

∆3

∆413
8

3

11

5

2

7

23

9

1

κℓ(B∆1
, . . . ,B∆7

) = 0.

{∆1,∆2,∆5,∆7} is indepen-
dent from {∆3,∆4,∆6}.
Triangles need to share an edge
to be dependent!
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Number of triangles in a random graph The cumulant method

Application to the number of triangles

Tn =
∑

∆={i ,j ,k}⊂[n]

B∆, where B∆(G ) =

{
1 if G contains the triangle ∆;

0 otherwise.

By multilinearity, κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

But most of the terms vanish (because the variables are independent).

Example:

∆1

∆7

∆5

∆2
∆6

∆3

∆4

∆8
13

8

3

11

5

2

7

23

9

1

κℓ(B∆1
, . . . ,B∆8

) 6= 0.

This configuration contributes to
the sum. Call it configuration of
dependent triangles.
Lemma: Such a configuration
has at most ℓ + 2 vertices (here
ℓ = 8).
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Number of triangles in a random graph The cumulant method

Bound on the cumulant

κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Fact 1: number of non-zero terms is smaller than Cℓn
ℓ+2.
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Number of triangles in a random graph The cumulant method

Bound on the cumulant

κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Fact 1: number of non-zero terms is smaller than Cℓn
ℓ+2.

only configurations of dependent triangles contribute to the sum ;

the number of unlabelled configurations of dependent triangles does
not depend on n (only on ℓ) ;

∆1

∆7

∆5

∆2
∆6

∆3

∆4

∆8
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Number of triangles in a random graph The cumulant method

Bound on the cumulant

κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Fact 1: number of non-zero terms is smaller than Cℓn
ℓ+2.

only configurations of dependent triangles contribute to the sum ;

the number of unlabelled configurations of dependent triangles does
not depend on n (only on ℓ) ;

∆1

∆7

∆5
∆2

∆6

∆3

∆4

∆8
13

8

3

11

5

2

7

23

9

1

each configuration can be labelled in at most nℓ+2 ways.
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Number of triangles in a random graph The cumulant method

Bound on the cumulant

κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Fact 1: number of non-zero terms is smaller than Cℓn
ℓ+2.

Fact 2 (easy): each non-zero terms is bounded by C ′
ℓ.

Conclusion:
|κℓ(Tn)| = Oℓ(n

ℓ+2)
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Number of triangles in a random graph The cumulant method

The central limit theorem for triangles

Proposition (Leonov, Shirryaev, 1955)

If X1, . . . ,Xℓ can be split into two sets of mutually independent variables,
then

κℓ(X1, · · · ,Xℓ) = 0

Corollary (Janson, 1988)

For each ℓ, there exists a constant Cℓ such that

|κℓ(Tn)| ≤ Cℓn
ℓ+2
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Number of triangles in a random graph The cumulant method

The central limit theorem for triangles

Proposition (Leonov, Shirryaev, 1955)

If X1, . . . ,Xℓ can be split into two sets of mutually independent variables,
then

κℓ(X1, · · · ,Xℓ) = 0

Corollary (Janson, 1988)

For each ℓ, there exists a constant Cℓ such that

|κℓ(Tn)| ≤ Cℓn
ℓ+2

Corollary (Ruciński, 1988)

T̃n :=
Tn − E(Tn)√

Var(Tn)
→ N (0, 1)

Proof: Var(Tn) ≈ n4 thus, κℓ(T̃n) = κℓ(Tn)/Var(Tn)
ℓ/2 = Oℓ(n

2−ℓ).
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First extension stronger conclusion

Transition

First extension: stronger conclusion
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First extension stronger conclusion

Statement

Theorem (F., Méliot, Nighekbali, 2014)

Let X1, . . . ,Xℓ be random variables with finite moments of order ℓ,

|κℓ(X1, · · · ,Xℓ)| ≤ 2ℓ−1||X1||ℓ · · · ||Xℓ||ℓ · ST
(
Gdep(X1, · · · ,Xℓ)

)
,

where ST
(
Gdep(X1, · · · ,Xℓ)

)
is the number of spanning trees of a

dependency graph of X1, · · · , Xℓ.

A dependency graph for the list (B∆1
, · · · , B∆ℓ

):

B∆i
∼ B∆j

⇔ ∆i and ∆j share an edge

Example:
∆1

∆7

∆5

∆2
∆6

∆3

∆4

∆8 B∆1

B∆7

B∆5

B∆2 B∆6

B∆3

B∆4

B∆8
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First extension stronger conclusion

Statement

Theorem (F., Méliot, Nighekbali, 2014)

Let X1, . . . ,Xℓ be random variables with finite moments of order ℓ,

|κℓ(X1, · · · ,Xℓ)| ≤ 2ℓ−1||X1||ℓ · · · ||Xℓ||ℓ · ST
(
Gdep(X1, · · · ,Xℓ)

)
.

Corollary (FMN, 2014)

There exists an absolute constant C such that

|κℓ(Tn)| ≤ (Cℓ)ℓnℓ+2

Naive bound: (Cℓ)3ℓnℓ+2
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First extension stronger conclusion

Statement

Theorem (F., Méliot, Nighekbali, 2014)

Let X1, . . . ,Xℓ be random variables with finite moments of order ℓ,

|κℓ(X1, · · · ,Xℓ)| ≤ 2ℓ−1||X1||ℓ · · · ||Xℓ||ℓ · ST
(
Gdep(X1, · · · ,Xℓ)

)
.

Corollary (FMN, 2014)

There exists an absolute constant C such that

|κℓ(Tn)| ≤ (Cℓ)ℓnℓ+2

Corollary (FMN,2014)

Let Xn = (Tn − E(Tn))/n
5/3. Then (uniformly on compacts of C),

E

(
ez Xn

)
= exp

(
n2/3z2/2

)
exp(Lpz

3/6)(1 + o(1)).

(Lp is an explicit constant that depends only on p).
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First extension stronger conclusion

Mod-Gaussian convergence and consequences

Corollary (FMN,2014)

Let Xn = (Tn − E(Tn))/n
5/3. Then (uniformly on compacts of C),

E

(
ez Xn

)
= exp

(
n2/3z2/2

)
exp(Lpz

3/6)(1 + o(1)).

This type of estimates for the Laplace transform is called mod-Gaussian
convergence (Kowalski, Nikeghbali). It implies:

a central limit theorem (here, we recover the result of Ruciński);

description of the normality zone and asymmetry of deviations at the
edge of this zone;

speed of convergence in the central limit theorem (here of order
O(1/n); we recover a result of Krokowski, Reichenbachs and Thaele,
2015).
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First extension stronger conclusion

Discussion

Our result applies to sum of mostly independent variables (i.e. most of the
variables are independent)

Number of copies of a given subgraph;

Number of arithmetic progression in a random subset of {1, . . . , n};

Number of descents/inversions in random permutations. . .
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First extension stronger conclusion

Discussion

Our result applies to sum of mostly independent variables (i.e. most of the
variables are independent)

Number of copies of a given subgraph;

Number of arithmetic progression in a random subset of {1, . . . , n};

Number of descents/inversions in random permutations. . .

The normality zone and speed of convergence results bound applies in the
general context of mod-Gaussian convergence. Again, lots of examples:

determinant of unitary random matrices,

number of zeros of a complex analytic function with random
coefficients,

Curie-Weiss model in statistical physics. . .
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Second extension weaker hypothesis

Transition

Second extension: weaker hypothesis

(work in progress)
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Second extension weaker hypothesis

Erdős-Rényi model G (n,M)

G has n vertices labelled 1,. . . ,n;

The edge-set of G is taken uniformly
among all possible edge-sets of cardinality
M.

Example with n = 8 and M = 14

1
2

3

4

5
6

7

8
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Second extension weaker hypothesis

Erdős-Rényi model G (n,M)

G has n vertices labelled 1,. . . ,n;

The edge-set of G is taken uniformly
among all possible edge-sets of cardinality
M.

Example with n = 8 and M = 14

1
2

3

4

5
6

7

8

If p = M/
(
n
2

)
, each edge appears with probability p, but no independence

any more!
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Second extension weaker hypothesis

Erdős-Rényi model G (n,M)

G has n vertices labelled 1,. . . ,n;

The edge-set of G is taken uniformly
among all possible edge-sets of cardinality
M.

Example with n = 8 and M = 14

1
2

3

4

5
6

7

8

If p = M/
(
n
2

)
, each edge appears with probability p, but no independence

any more!

Question

Let Mn =
⌊
p
(
n
2

)⌋
, with p fixed.

Describe asymptotically the fluctuations of the number Tn of triangles in
G (n,Mn).
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Second extension weaker hypothesis

Proposition (F., > 2015)

Let ∆1, . . . ,∆ℓ be triangles. Define G∆1,...,∆ℓ
as before and denote r its

number of connected components. Then

κℓ (B∆1
, · · · ,B∆ℓ

) ≤
Cℓ

M r−1
n

.

∆1

∆7

∆5

∆2
∆6

∆3

∆4

∆8 B∆1

B∆7

B∆5

B∆2 B∆6

B∆3

B∆4

B∆8

This graph is not a dependency graph any more, but the more connected
components it has, the smaller the cumulant is.
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Second extension weaker hypothesis

Proposition (F., > 2015)

Let ∆1, . . . ,∆ℓ be triangles. Define G∆1,...,∆ℓ
as before and denote r its

number of connected components. Then

κℓ (B∆1
, · · · ,B∆ℓ

) ≤
Cℓ

M r−1
n

.

Corollary

For each ℓ, there exists a constant Cℓ such that

κℓ(Tn) ≤ Cℓ nℓ+2.

Corollary

Tn − E(Tn)√
Var(Tn)

→ N (0, 1)

First proved by Janson in 1994 using a coupling with G (n, pn).
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Second extension weaker hypothesis

“Weak dependency graph”: a general theory?

Other examples, where the order of magnitude of joint cumulants
depends on the number of components of some underlying
graph:

1 Patterns in random words with a fixed number of occurrences of each
letter;

2 Images of distinct integers in a random permutation of size n are
1/n-dependent;

3 Indicators of particles that can jump in the steady state of the
symmetric simple exclusion process;

4 Entries in Haar-distributed orthogonal matrices;

5 Relations in random set partitions.

Yields various central limit theorems in all cases (work in progress!)
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Second extension weaker hypothesis

Transition

Ideas of proof
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Ideas of proof Key ingredient: combinatorial formula for cumulants

Moment-cumulant relation

Mixed cumulants can be expressed in terms of mixed moments:

κ(X1, . . . ,Xr ) =
∑

π

µ(π)Mπ,

where

π runs over set-partitions of [ℓ],

µ(π) = µ(π, {[ℓ]}) is the Möbius function of the set-partition poset
(it is explicit but we will only use

∑
interval µ(π) = 0),

Mπ =
∏

B∈π E
[∏

i∈B Xi

]
.

Example:

M{{1,3},{2,4}} = E(X1X3)E(X2X4)

κ3(X ,Y ,Z ) = E(XYZ )− E(XY )E(Z )− E(XZ )E(Y )

− E(YZ )E(X ) + 2E(X )E(Y )E(Z ).

V. Féray (with PLM, AN) (I-Math, UZH)Cumulants and triangles Warwick, 2015–06 17 / 28



Ideas of proof Proof of the first extension

Using independence to simplify Mπ

Example: take π =
{
{1, 2, 3, 4}, {5, 6}

}
and

H := Gdep(X1, . . . ,X6) = 1

23

4

5 6

Then Mπ := E(X1X2X3X4)E(X5X6)

= E(X1X2)E(X3X4)E(X5)E(X6)

= M{
{1,2},{3,4},{5},{6}

}.

In general, Mπ = MφH(π), with obvious definition of φH(π):
“replace each part πi of π by the connected components of H[πi ]”.
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Ideas of proof Proof of the first extension

Rewriting the summation

κ(X1, . . . ,Xr ) =
∑

π

µ(π)Mπ =
∑

π

µ(π)MφH(π)

=
∑

π′

Mπ′




∑

π s.t.
φH (π)=π′

µ(π)






Ideas of proof Proof of the first extension

Rewriting the summation

κ(X1, . . . ,Xr ) =
∑

π

µ(π)Mπ =
∑

π

µ(π)MφH(π)

=
∑

π′

Mπ′




∑

π s.t.
φH (π)=π′

µ(π)




φH(π) = π′ ⇒ for all part π′
i of π′, the induced graph H[π′

i ] is
connected.
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Ideas of proof Proof of the first extension

Rewriting the summation

κ(X1, . . . ,Xr ) =
∑

π

µ(π)Mπ =
∑

π

µ(π)MφH(π)

=
∑

π′

Mπ′




∑

π s.t.
φH (π)=π′

µ(π)




φH(π) = π′ ⇒ for all part π′
i of π′, the induced graph H[π′

i ] is
connected.

if so, we have to compute

απ′

H :=
∑

π s.t.
φH (π)=π′

µ(π).
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Ideas of proof Proof of the first extension

Bounding α
π′

H

Consider the contracted graph H/π′. Example:

1

23

4

5 6

π′ =
{
{1, 2}, {3, 4}, {5, 6}

}

7→

1, 23, 4

5, 6

It is a multigraph.
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Ideas of proof Proof of the first extension

Bounding α
π′

H

Consider the contracted graph H/π′. Example:

1

23

4

5 6

π′ =
{
{1, 2}, {3, 4}, {5, 6}

}

7→

1, 23, 4

5, 6

It is a multigraph.

Lemma
∣∣∣απ′

H

∣∣∣ ≤ ST(H/π′).

In the example: ST(H/π′) = 4.
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Ideas of proof Proof of the first extension

Bounding everything

Reminder:

κ(X1, . . . ,Xℓ) =
∑

π′

Mπ′απ′

H

where the sum runs over set-partition π′ such that the induced graphs
H[π′

i ] are connected.
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Ideas of proof Proof of the first extension

Bounding everything

Reminder:

κ(X1, . . . ,Xℓ) =
∑

π′

Mπ′απ′

H

∏

i

1H[π′
i
] connected
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Ideas of proof Proof of the first extension

Bounding everything

Reminder:

κ(X1, . . . ,Xℓ) =
∑

π′

Mπ′απ′

H

∏

i

1H[π′
i
] connected

We have the following inequalities

|M ′
π| ≤ ||X1||ℓ · · · ||Xℓ||ℓ (Hölder inequality);∣∣∣απ′

H

∣∣∣ ≤ ST(H/π′);

1H[π′
i
] connected ≤ ST(H[π′

i ])
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Ideas of proof Proof of the first extension

Bounding everything

Reminder:

κ(X1, . . . ,Xℓ) =
∑

π′

Mπ′απ′

H

∏

i

1H[π′
i
] connected

We have the following inequalities

|M ′
π| ≤ ||X1||ℓ · · · ||Xℓ||ℓ (Hölder inequality);∣∣∣απ′

H

∣∣∣ ≤ ST(H/π′);

1H[π′
i
] connected ≤ ST(H[π′

i ])

Thus

|κ(X1, . . . ,Xℓ)| ≤ ||X1||ℓ · · · ||Xℓ||ℓ

[
∑

π′

ST(H/π′)

(
∏

i

ST(H[π′
i ])

)]
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Ideas of proof Proof of the first extension

A combinatorial identity

Lemma

2ℓ−1 ST(H) =
∑

π′

ST(H/π′)

(
∏

i

ST(H[π′
i ])

)
,

where the sum runs over all set-partitions of [ℓ].
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Ideas of proof Proof of the first extension

A combinatorial identity

Lemma

2ℓ−1 ST(H) =
∑

π′

ST(H/π′)

(
∏

i

ST(H[π′
i ])

)
,

where the sum runs over all set-partitions of [ℓ].

T = 1

23

4

5 6

↔





π =
{
{1, 2, 3}, {4, 5, 6}

}
;

T1 =
1

23

, T2 =
4

5 6

;

T =

π1

π2

.
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Ideas of proof Proof of the first extension

Progress report

We have “proved”:

Theorem

Let X1, . . . ,Xℓ be random variables with finite moments of order ℓ,

|κℓ(X1, · · · ,Xℓ)| ≤ 2ℓ−1||X1||ℓ · · · ||Xℓ||ℓ · ST
(
Gdep(X1, · · · ,Xℓ)

)
.

Next step:

Corollary

There exists an absolute constant C such that

|κℓ(Tn)| ≤ (Cℓ)ℓnℓ+2.
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Ideas of proof Proof of the first extension

A sharp bound on cumulants of Tn

Recall that κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Thus
|κℓ(Tn)| ≤

∑

∆1,...,∆ℓ

2ℓ−1
∣∣∣ST

(
Gdep(B∆1

, . . . ,B∆ℓ
)
)∣∣∣ .
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A sharp bound on cumulants of Tn

Recall that κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Thus

|κℓ(Tn)| ≤ 2ℓ−1
∑

T tree

∣∣∣
{
(∆1, . . . ,∆ℓ) s.t. T ⊂ Gdep(B∆1

, . . . ,B∆ℓ
)
}∣∣∣ .
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Ideas of proof Proof of the first extension

A sharp bound on cumulants of Tn

Recall that κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Thus

|κℓ(Tn)| ≤ 2ℓ−1
∑

T tree

∣∣∣
{
(∆1, . . . ,∆ℓ) s.t. T ⊂ Gdep(B∆1

, . . . ,B∆ℓ
)
}∣∣∣ .

Fix a tree. For how many lists
of triangles is it contained in
Gdep(B∆1

, . . . ,B∆ℓ
) ?

B∆1

B∆7

B∆5

B∆2 B∆6

B∆3

B∆4

B∆8
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Ideas of proof Proof of the first extension

A sharp bound on cumulants of Tn

Recall that κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Thus

|κℓ(Tn)| ≤ 2ℓ−1
∑

T tree

∣∣∣
{
(∆1, . . . ,∆ℓ) s.t. T ⊂ Gdep(B∆1

, . . . ,B∆ℓ
)
}∣∣∣ .

Fix a tree. For how many lists
of triangles is it contained in
Gdep(B∆1

, . . . ,B∆ℓ
) ?

B∆1

B∆7

B∆5

B∆2 B∆6

B∆3

B∆4

B∆8

Choose any triangle for ∆1:
(
n
3

)
choices ;
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Ideas of proof Proof of the first extension

A sharp bound on cumulants of Tn

Recall that κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Thus

|κℓ(Tn)| ≤ 2ℓ−1
∑

T tree

∣∣∣
{
(∆1, . . . ,∆ℓ) s.t. T ⊂ Gdep(B∆1

, . . . ,B∆ℓ
)
}∣∣∣ .

Fix a tree. For how many lists
of triangles is it contained in
Gdep(B∆1

, . . . ,B∆ℓ
) ?

B∆1

B∆7

B∆5

B∆2 B∆6

B∆3

B∆4

B∆8

Choose any triangle for ∆1:
(
n
3

)
choices ;

∆5 should have an edge in common with ∆1: 3 for an edge of ∆1 and
n − 2 choices for the other vertex of ∆5 ⇒ 3n − 6 choices ;
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A sharp bound on cumulants of Tn

Recall that κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Thus

|κℓ(Tn)| ≤ 2ℓ−1
∑

T tree

∣∣∣
{
(∆1, . . . ,∆ℓ) s.t. T ⊂ Gdep(B∆1

, . . . ,B∆ℓ
)
}∣∣∣ .

Fix a tree. For how many lists
of triangles is it contained in
Gdep(B∆1

, . . . ,B∆ℓ
) ?

B∆1

B∆7

B∆5

B∆2 B∆6

B∆3

B∆4

B∆8

Choose any triangle for ∆1:
(
n
3

)
choices ;

∆5 should have an edge in common with ∆1: 3 for an edge of ∆1 and
n − 2 choices for the other vertex of ∆5 ⇒ 3n − 6 choices ;

∆2 should have an edge in common with ∆5. Also 3n − 6 choices.

. . .
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Ideas of proof Proof of the first extension

A sharp bound on cumulants of Tn

Recall that κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Thus

|κℓ(Tn)| ≤ 2ℓ−1
∑

T tree

∣∣∣
{
(∆1, . . . ,∆ℓ) s.t. T ⊂ Gdep(B∆1

, . . . ,B∆ℓ
)
}∣∣∣ .

Fix a tree. For how many lists
of triangles is it contained in
Gdep(B∆1

, . . . ,B∆ℓ
) ?

≤
(
n
3

)
(3n − 6)ℓ−1

B∆1

B∆7

B∆5

B∆2 B∆6

B∆3

B∆4

B∆8

Choose any triangle for ∆1:
(
n
3

)
choices ;

∆5 should have an edge in common with ∆1: 3 for an edge of ∆1 and
n − 2 choices for the other vertex of ∆5 ⇒ 3n − 6 choices ;

∆2 should have an edge in common with ∆5. Also 3n − 6 choices.

. . .
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Ideas of proof Proof of the first extension

A sharp bound on cumulants of Tn

Recall that κℓ(Tn) =
∑

∆1,...,∆ℓ

κℓ(B∆1
, . . . ,B∆ℓ

).

Thus

|κℓ(Tn)| ≤ 2ℓ−1
∑

T tree

∣∣∣
{
(∆1, . . . ,∆ℓ) s.t. T ⊂ Gdep(B∆1

, . . . ,B∆ℓ
)
}∣∣∣ .

Fix a tree. For how many lists
of triangles is it contained in
Gdep(B∆1

, . . . ,B∆ℓ
) ?

≤
(
n
3

)
(3n − 6)ℓ−1

B∆1

B∆7

B∆5

B∆2 B∆6

B∆3

B∆4

B∆8

Choose any triangle for ∆1:
(
n
3

)
choices ;

∆5 should have an edge in common with ∆1: 3 for an edge of ∆1 and
n − 2 choices for the other vertex of ∆5 ⇒ 3n − 6 choices ;

∆2 should have an edge in common with ∆5. Also 3n − 6 choices.

. . . |κℓ(Tn)| ≤ 2ℓ−1ℓℓ−2

(
n

3

)
(3n − 6)ℓ−1 ≤ (6ℓ)ℓnℓ+2
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Ideas of proof Proof of the first extension

Mod-Gaussian convergence

Let Xn = (Tn − E(Tn))/n
5/3, then

logE(exp(zXn)) =
∑

ℓ≥2

κℓ(Xn)z
ℓ/ℓ!

= n2/3σ2 z2/2 + L z3/6 +
∑

ℓ≥4

n5/3 κℓ(Tn) zℓ/ℓ!

︸ ︷︷ ︸
call it R
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Ideas of proof Proof of the first extension

Mod-Gaussian convergence

Let Xn = (Tn − E(Tn))/n
5/3, then

logE(exp(zXn)) =
∑

ℓ≥2

κℓ(Xn)z
ℓ/ℓ!

= n2/3σ2 z2/2 + L z3/6 +
∑

ℓ≥4

n5/3 κℓ(Tn) zℓ/ℓ!

︸ ︷︷ ︸
call it R

But |R | ≤
∑

ℓ≥4 n2(3−ℓ)/3(Cℓ)ℓzℓ/ℓ! = O(n−2/3) locally uniformly for z in
C. Thus

E(exp(zXn)) = exp
(
n2/3σ2 z2/2 + L z3/6

)
(1 + O(n−2/3)).
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Ideas of proof Proof of the first extension

Mod-Gaussian convergence

Let Xn = (Tn − E(Tn))/n
5/3, then

logE(exp(zXn)) =
∑

ℓ≥2

κℓ(Xn)z
ℓ/ℓ!

= n2/3σ2 z2/2 + L z3/6 +
∑

ℓ≥4

n5/3 κℓ(Tn) zℓ/ℓ!

︸ ︷︷ ︸
call it R

But |R | ≤
∑

ℓ≥4 n2(3−ℓ)/3(Cℓ)ℓzℓ/ℓ! = O(n−2/3) locally uniformly for z in
C. Thus

E(exp(zXn)) = exp
(
n2/3σ2 z2/2 + L z3/6

)
(1 + O(n−2/3)).

almost as if Xn would be the sum of n2/3 independent standard Gaussian.
−→ results on normality zone and speed of convergence follow by
adaptation of standard techniques (Berry-Esseen lemma, change of
probability measure).
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Ideas of proof Second extension

A word on the proof of the second extension (1/2)

First consider edge-disjoint triangles ∆1, . . . ,∆ℓ.

Then, for A ⊂ {1, . . . , ℓ},

MA := E

(
∏

i∈A

B∆i

)
=

(Mn)3ℓ(
n
2

)
3ℓ

Notation: (x)k = x(x − 1)(x − 2) . . . (x − k + 1).

We want to prove that

κ(B∆1
, . . . ,B∆ℓ

) = O(M−ℓ+1
n )

This case is already difficult!
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Ideas of proof Second extension

A word on the proof of the second extension (2/2)

Lemma

Define TB by MA =
∏

B⊂A(1 + TB), i.e. TB = −1 +
∏

A⊂B M
(−1)|B|−|A|

A .

Then TB = O(M
−|B|+1
n ).

Proof: elementary analysis.
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Ideas of proof Second extension

A word on the proof of the second extension (2/2)

Lemma

Define TB by MA =
∏

B⊂A(1 + TB), i.e. TB = −1 +
∏

A⊂B M
(−1)|B|−|A|

A .

Then TB = O(M
−|B|+1
n ).

Using moment-cumulant formula,

κℓ(X1, . . . ,Xℓ) =
∑

π

µ(π)

[
∏

A∈π

∏

B⊂A

(1 + TB)

]
.

Expand and exchange summation

κℓ(X1, . . . ,Xℓ) =
∑

(monomial in TB)


 ∑

π
conditions

µ(π)


 .
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Ideas of proof Second extension

A word on the proof of the second extension (2/2)

Lemma

Define TB by MA =
∏

B⊂A(1 + TB), i.e. TB = −1 +
∏

A⊂B M
(−1)|B|−|A|

A .

Then TB = O(M
−|B|+1
n ).

Using moment-cumulant formula,

κℓ(X1, . . . ,Xℓ) =
∑

π

µ(π)

[
∏

A∈π

∏

B⊂A

(1 + TB)

]
.

Expand and exchange summation

κℓ(X1, . . . ,Xℓ) =
∑

(monomial in TB)


 ∑

π
conditions

µ(π)


 .

Fact: the sum [. . . ] vanish unless the monomial is O(Mℓ−1
n ).
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Ideas of proof Second extension

Open questions

What about G (n, pn) with pn → 0 and n pn → ∞. One has:

κℓ(Tn) ≤ Cℓ n3 p2
n max(np2

n , 1)
ℓ−1 (Mikhailov, 1991);

κℓ(Tn) ≤ (Cℓ)ℓ nℓ+2 p3
n (FMN, 2014).

Open question: prove or disprove

κℓ(Tn) ≤ (Cℓ)ℓn3 p2
n max(np2

n , 1)
ℓ−1
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κℓ(Tn) ≤ Cℓ n3 p2
n max(np2

n , 1)
ℓ−1 (Mikhailov, 1991);

κℓ(Tn) ≤ (Cℓ)ℓ nℓ+2 p3
n (FMN, 2014).

Open question: prove or disprove

κℓ(Tn) ≤ (Cℓ)ℓn3 p2
n max(np2

n , 1)
ℓ−1

For G (n,Mn), with Mn =
⌊
pn

(
n
2

)⌋
, one has

κℓ(Tn) ≤ Cℓ n3 p2
n max(np2

n , 1)
ℓ−1 (F., >2015);

Open question: prove or disprove

κℓ(Tn) ≤ (Cℓ)ℓn3 p2
n max(np2

n , 1)
ℓ−1
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Ideas of proof Second extension

Open questions

What about G (n, pn) with pn → 0 and n pn → ∞. One has:

κℓ(Tn) ≤ Cℓ n3 p2
n max(np2

n , 1)
ℓ−1 (Mikhailov, 1991);

κℓ(Tn) ≤ (Cℓ)ℓ nℓ+2 p3
n (FMN, 2014).

Open question: prove or disprove

κℓ(Tn) ≤ (Cℓ)ℓn3 p2
n max(np2

n , 1)
ℓ−1

For G (n,Mn), with Mn =
⌊
pn

(
n
2

)⌋
, one has

κℓ(Tn) ≤ Cℓ n3 p2
n max(np2

n , 1)
ℓ−1 (F., >2015);

Open question: prove or disprove

κℓ(Tn) ≤ (Cℓ)ℓn3 p2
n max(np2

n , 1)
ℓ−1

Future work: Stein’s method/Lovász local lemma with weak
dependency graphs?
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