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Number of triangles in a random graph The cumulant method

A problem in random graphs

2
Erdés-Rényi model of random graphs G(n, p): 3 ‘ 1
@ G has n vertices labelled 1,...,n; 4 > 8
@ each edge {/,/} is taken independently
with probability p; 5 : 7

Example : n=8,p=1/2
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Number of triangles in a random graph The cumulant method

A problem in random graphs

2
Erdés-Rényi model of random graphs G(n, p): 3 ‘ 1
@ G has n vertices labelled 1,...,n; 4 > 8
@ each edge {/,/} is taken independently
with probability p; 5 7
6
Example : n=8,p=1/2
Question
Fix p €]0; 1[.

Describe asymptotically the fluctuations of the number T, of triangles.

V. Féray (with PLM, AN) Cumulants and triangles Warwick, 2015-06 2/ 28



Number of triangles in a random graph IR ET TS Y |

A problem in random graphs

2
Erdés-Rényi model of random graphs G(n, p): 3 ‘ 1
@ G has n vertices labelled 1,...,n; 4 > 8
@ each edge {/,/} is taken independently
with probability p; 5 7
6
Example : n=8,p=1/2
Question
Fix p €]0; 1[.

Describe asymptotically the fluctuations of the number T, of triangles.

Answer (Rucinsky, 1988)

The fluctuations are asymptotically Gaussian.

4
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Number of triangles in a random graph IR ET TS Y |
Outline

@ Intro: cumulant method for number of triangles in G(n,p)
© First extension: stronger conclusion

© Second extension: weaker hypothesis

© Ideas of proof
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Number of triangles in a random graph The cumulant method

A good tool for that: mixed cumulants

o the r-th mixed cumulant s, of r random variables is a specific r-linear
symmetric polynomial in joint moments. Examples:
k1(X) == E(X), k2(X,Y):=Cov(X,Y)=E(XY)—-E(X)E(Y)
k3(X,Y,Z) :=E(XYZ) - E(XY)E(Z) — E(XZ2)E(Y)
—E(YZ)E(X) + 2E(X)E(Y)E(2).
Not. rg(X) = kg(X,..., X) =E(X") +...
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A good tool for that: mixed cumulants

o the r-th mixed cumulant s, of r random variables is a specific r-linear
symmetric polynomial in joint moments. Examples:
k1(X) == E(X), k2(X,Y):=Cov(X,Y)=E(XY)—-E(X)E(Y)
k3(X,Y,Z) :=E(XYZ) - E(XY)E(Z) — E(XZ2)E(Y)
—E(YZ)E(X) + 2E(X)E(Y)E(2).
Not. rg(X) = kg(X,..., X) =E(X") +...

@ if the variables can be split in two mutually independent sets, then the
cumulant vanishes.
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Number of triangles in a random graph The cumulant method

A good tool for that: mixed cumulants

o the r-th mixed cumulant s, of r random variables is a specific r-linear
symmetric polynomial in joint moments. Examples:

k1(X) = E(X), ra(X,Y):= Cov(X,Y)=E(XY)-E(X)E(Y)
#3(X, Y, Z) = E(XYZ) — E(XY)E(Z) — E(XZ)E(Y)
— E(YZ)E(X) + 2E(X)E(Y)E(Z).
Not. rg(X) = kg(X,..., X) =E(X") +...

@ if the variables can be split in two mutually independent sets, then the
cumulant vanishes.

o if, for each r # 2, the sequence k,(X,) converges towards 0 and if
Var(X,) has a limit, then X,, converges in distribution towards a
Gaussian law.
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Number of triangles in a random graph IR ET TS Y |

Application to the number of triangles

1 if G contains the triangle A;
P> ;

Ba, where BA(G) =

A={i Rl 0 otherwise.
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Number of triangles in a random graph IR ET TS Y |

Application to the number of triangles

1 if G contains the triangle A;

0 otherwise.

Th= Z Ba, where BA(G) = {

A={i.j,k}C[n]

By multilinearity, x¢(T,) = Z ke(Bays - -, Ba,)-
Ag,..., Ay
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Application to the number of triangles

1 if G contains the triangle A;

0 otherwise.

Th= Z Ba, where BA(G) = {

A={i.j,k}C[n]

By multilinearity, x¢(T,) = Z ke(Bays - -, Ba,)-
Ag,..., Ay

But most of the terms vanish (because the variables are independent).
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Number of triangles in a random graph The cumulant method

Application to the number of triangles

1 if G contains the triangle A;
Tn= Z Ba, where BA(G) — { ! contains the triangle

A:{i7j7k}c[n]

By multilinearity, x¢(T,) = Z ke(Bays - -, Ba,)-
Ag,.., Ay

0 otherwise.

But most of the terms vanish (because the variables are independent).

11 7

3

4 5 1 {A1, Ay, A5, A7} is indepen-
4% 19 2 dent from {A3, Ay, N6}
B 3 Reminder: presence of different

Example: 2 edges are independent events.

H@(BAI, ey BA7) = 0
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Number of triangles in a random graph The cumulant method

Application to the number of triangles

1 if G contains the triangle A;

0 otherwise.

T, = Z Ba, where BA(G) = {

A:{i7j7k}c[n]

By multilinearity, x¢(T,) = Z ke(Bays - -, Ba,)-
Ag,.., Ay

But most of the terms vanish (because the variables are independent).

{A1,A2, A5, A7} is indepen-
dent from {A3, Ay, Ag}.
Triangles need to share an edge
to be dependent!

Example:

/ig(BAl, ey BA7) =0.
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Number of triangles in a random graph The cumulant method

Application to the number of triangles

1 if G contains the triangle A;
0 otherwise.

Th= Z Ba, where BA(G) = {

A={i.j,k}C[n]

By multilinearity, x¢(T,) = Z ke(Bays - -, Ba,)-
Ag,.., Ay

But most of the terms vanish (because the variables are independent).

This configuration contributes to
the sum. Call it configuration of
dependent triangles.

Lemma: Such a configuration
has at most ¢ + 2 vertices (here
¢=238).

Example:

H@(BAI, ey BAB) 75 0.
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Number of triangles in a random graph IR ET TS Y |

Bound on the cumulant

ke(Ta)= > ku(Bays---,Ba,)-
A1,...,

Fact 1: number of non-zero terms is smaller than C,n‘*+2.
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Number of triangles in a random graph The cumulant method

Bound on the cumulant

ke(Ta)= > ku(Bays---,Ba,)-
A1,...,

Fact 1: number of non-zero terms is smaller than C,n‘*+2.

@ only configurations of dependent triangles contribute to the sum ;

@ the number of unlabelled configurations of dependent triangles does
not depend on n (only on ¢) ;
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Number of triangles in a random graph The cumulant method

Bound on the cumulant

ke(Ta)= > ku(Bays---,Ba,)-
A1,...,

Fact 1: number of non-zero terms is smaller than Cyn‘*+2.

@ only configurations of dependent triangles contribute to the sum ;

@ the number of unlabelled configurations of dependent triangles does
not depend on n (only on ¢) ;

@ each configuration can be labelled in at most nf*2
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Number of triangles in a random graph The cumulant method

Bound on the cumulant

ke(Ta)= > ku(Bays---,Ba,)-
A1,...,

Fact 1: number of non-zero terms is smaller than C,n‘*+2.

Fact 2 (easy): each non-zero terms is bounded by Cj.

Conclusion:
— 42
|ke(Th)l = Og(n™)
Cumulants and triangles Warwick, 2015-06 6 /28



Number of triangles in a random graph IR ET TS Y |

The central limit theorem for triangles

Proposition (Leonov, Shirryaev, 1955)

If X1,..., Xy can be split into two sets of mutually independent variables,
then
ke(X, -0, Xg) =0

Corollary (Janson, 1988)

For each ¢, there exists a constant C, such that

|/£g( Tn)| S an£+2
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Number of triangles in a random graph IR ET TS Y |

The central limit theorem for triangles

Proposition (Leonov, Shirryaev, 1955)

If X1,..., Xy can be split into two sets of mutually independent variables,
then
ke(X, -0, Xg) =0

Corollary (Janson, 1988)

For each ¢, there exists a constant C, such that

|/£g( Tn)| S an£+2

Corollary (Rucinski, 1988)
F . To—E(Th)

. VT — N(0,1)

Proof: Var(T,) ~ n* thus, /ag(ﬁ) = ke(Tn)/ Var(T,)"? = Oy(n?~).
Cumulants and triangles Warwick, 2015-06 7/ 28



First extension stronger conclusion

Transition

First extension: stronger conclusion
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First extension stronger conclusion

Statement

Theorem (F., Méliot, Nighekbali, 2014)

Let Xq,...,X; be random variables with finite moments of order ¢,

|H€(X17 T )Xf)| < 26_1||X1||€ T ||X€||€ ST (Gdep(Xl) te 7X€))7

where ST (Gdep(le e ,Xg)) is the number of spanning trees of a

dependency graph of X1, -, X,.
A dependency graph for the list (Ba,, ---, Ba,):
Ba; ~ Ba; & A and A; share an edge
Ba,
Example: 4§ A Bag B, (Bos
AAr A e
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First extension stronger conclusion

Statement

Theorem (F., Méliot, Nighekbali, 2014)

Let Xq,...,X; be random variables with finite moments of order ¢,

[e(Xa, - Xe)| < 27 |[Xalle - - [ Xelle - ST (Gep(Xa, -+ 5 Xe))-

Corollary (FMN, 2014)

There exists an absolute constant C such that
|ke(Ta)| < (CE)' "2

Naive bound: (C¢)3¢nt+2
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First extension stronger conclusion

Statement

Theorem (F., Méliot, Nighekbali, 2014)

Let Xq,...,X; be random variables with finite moments of order ¢,

[e(Xa, - Xe)| < 27 |[Xalle - - [ Xelle - ST (Gep(Xa, -+ 5 Xe))-

Corollary (FMN, 2014)

There exists an absolute constant C such that
|ke(Ta)| < (CE)' "2

Corollary (FMN,2014)

Let X, = (T, — E(T,))/n>3. Then (uniformly on compacts of C),
E (ezx") = exp (12/322/2) exp(Lp23/6)(1 + o(1)).

(Lp is an explicit constant that depends only on p).
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First extension stronger conclusion

Mod-Gaussian convergence and consequences

Corollary (FMN,2014)
Let X, = (T, — E(T,))/n>3. Then (uniformly on compacts of C),
E (ezx") = exp (n2/322/2) exp(Lpz3/6)(1 + o(1)).

This type of estimates for the Laplace transform is called mod-Gaussian
convergence (Kowalski, Nikeghbali). It implies:

@ a central limit theorem (here, we recover the result of Rucinski);

@ description of the normality zone and asymmetry of deviations at the
edge of this zone;

@ speed of convergence in the central limit theorem (here of order

O(1/n); we recover a result of Krokowski, Reichenbachs and Thaele,
2015).
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First extension stronger conclusion

Discussion

Our result applies to sum of mostly independent variables (i.e. most of the
variables are independent)

@ Number of copies of a given subgraph;
@ Number of arithmetic progression in a random subset of {1,...,n};

@ Number of descents/inversions in random permutations. . .
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First extension stronger conclusion

Discussion

Our result applies to sum of mostly independent variables (i.e. most of the
variables are independent)

@ Number of copies of a given subgraph;
@ Number of arithmetic progression in a random subset of {1,...,n};

@ Number of descents/inversions in random permutations. . .

The normality zone and speed of convergence results bound applies in the
general context of mod-Gaussian convergence. Again, lots of examples:

@ determinant of unitary random matrices,

@ number of zeros of a complex analytic function with random
coefficients,

@ Curie-Weiss model in statistical physics. . .
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Transition

Second extension: weaker hypothesis

(work in progress)
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weaker hypothesis
Erdés-Rényi model G(n, M)

@ G has n vertices labelled 1,...,n;

@ The edge-set of G is taken uniformly
among all possible edge-sets of cardinality

M.
Example with n =8 and M = 14
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weaker hypothesis
Erdés-Rényi model G(n, M)

@ G has n vertices labelled 1,...,n;

@ The edge-set of G is taken uniformly
among all possible edge-sets of cardinality

M.
Example with n =8 and M = 14

If p= I\/I/(’2’) each edge appears with probability p, but no independence

any more!
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weaker hypothesis
Erdés-Rényi model G(n, M)

@ G has n vertices labelled 1,...,n;

@ The edge-set of G is taken uniformly

among all possible edge-sets of cardinality
M.

Example with n =8 and M = 14

If p= I\/I/(’2’) each edge appears with probability p, but no independence
any more!

Question

Let M, = |p(5)], with p fixed.
Describe asymptotically the fluctuations of the number T, of triangles in
G(n, M,).
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Proposition (F., > 2015)

Let Ay,..., Ay be triangles. Define Ga,,.. a, as before and denote r its
number of connected components. Then

Ry (BAp"' ’BAZ) < Mr_l'

4 T
4? 2o B [P
8
4 BAI B BA-'.
JAVY BA
6

This graph is not a dependency graph any more, but the more connected
components it has, the smaller the cumulant is.
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Proposition (F., > 2015)

Let Ay,..., Ay be triangles. Define Ga,, . a, as before and denote r its

number of connected components. Then

"ie(BAp"' 7BAZ) < Mr_]_'
n

Corollary

For each ¢, there exists a constant C; such that

rke(Tp) < Cpn**2,

Corollary
Tn—E(T,)

Var(T,) - N1

First proved by Janson in 1994 using a coupling with G(n, p,).
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el O (e
“Weak dependency graph™: a general theory?

Other examples, where the order of magnitude of joint cumulants
depends on the number of components of some underlying
graph:
© Patterns in random words with a fixed number of occurrences of each
letter;

© Images of distinct integers in a random permutation of size n are
1/n-dependent;

© Indicators of particles that can jump in the steady state of the
symmetric simple exclusion process;

@ Entries in Haar-distributed orthogonal matrices;

© Relations in random set partitions.
Yields various central limit theorems in all cases (work in progress!)
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Transition

|deas of proof
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[CEEERAIZTIM  Key ingredient: combinatorial formula for cumulants

Moment-cumulant relation

Mixed cumulants can be expressed in terms of mixed moments:
KXty X)) =) ()M,
™

where
@ 7 runs over set-partitions of [¢],

o u(m) = p(m,{[]}) is the Mdbius function of the set-partition poset
(it is explicit but we will only use >, ... p(7) =0),

o Mr=[lger Elllics Xi] -
Example:
Mig1,33,12,41) = E(X1.X3)E(X2Xy)
k3(X, Y, Z) = E(XYZ) — E(XY)E(Z) — E(XZ)E(Y)
~ E(YZ)E(X) + 2E(X)E(Y)E(Z).
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IO
Using independence to simplify M,

Example: take m = {{1,2,3,4}, {5,6}} and

Then M7r = E(X1X2X3X4)E(X5X6)
= E(X1 X2)E(X3.X3)E(X5)E(X6)

=M a1}

In general, My = My, (), with obvious definition of ¢y(r):
“replace each part m; of 7 by the connected components of H[x;]".
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[CEELNI NIl Proof of the first extension

Rewriting the summation

/ﬁ(Xl,...,Xr):Z,u( YM;: Z” )My ()
:ZMW’ Z /14(7()

7 s.t.

o (m)=n’



[CEELNI NIl Proof of the first extension

Rewriting the summation

/ﬁ(Xl,...,Xr):Z,u( YM;: Z” )My ()
:ZMW’ Z /1,(7'(')

7 s.t.

o (m)=n’

@ ¢n(m) =n" = for all part 7} of ©’, the induced graph H[x!] is
connected.
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19 / 28



[CEELNI NIl Proof of the first extension

Rewriting the summation

/ﬁ(Xl,...,Xr):Z,u( YM;: Z” )My ()
:ZMW’ Z /‘(7()

7 s.t.

o (m)=n'
@ ¢n(m) =n" = for all part 7} of ©’, the induced graph H[x!] is

connected.

o if so, we have to compute

V. Féray (with PLM, AN) Cumulants and triangles Warwick, 2015—06

19 / 28



[CEELNI NIl Proof of the first extension

Bounding o/,g

Consider the contracted graph H/7’. Example:

' ={{1,2}, {3,4}, {5.6}}

It is a multigraph.
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[CEELNI NIl Proof of the first extension

Bounding o,

Consider the contracted graph H/7’. Example:

,6
= {{1.2}, (3.4}, {5.6}}

It is a multigraph.

Lemma
of, | < ST(H/x). J

In the example: ST(H/7') = 4.
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[CEELNI NIl Proof of the first extension

Bounding everything
Reminder:

KX, X)) =Y Moy

where the sum runs over set-partition 7’ such that the induced graphs
H|[r’] are connected.
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izl el
Bounding everything

Reminder:

’

K‘(Xla ce ,Xg) = Z Mﬂ'/a;[y'/ H 1H[7rlf] connected

™
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izl el
Bounding everything

Reminder:

K‘(Xla ce ,Xg) = Z Mﬂ'/a;fl/ H 1H[7rlf] connected

71.l

We have the following inequalities
ML < [ Xlle-- I Xelle (Holder inequality):
a’,f,l < ST(H/7');

1H[7rlf] connected < ST(H[ﬂ-:])
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IO
Bounding everything

Reminder:

K‘(Xla ce ,Xg) = Z Mﬂ'/a;fl/ H 1H[7rlf] connected

71.l

We have the following inequalities

ML < [ Xlle-- I Xelle (Holder inequality):
< ST(H/7");
LH[x] connected < ST(H[T])

’
afy

Thus

k(X125 X)L < U[Xalle -+ [ Xelle

> ST(H/x') <H ST(H[W?]))]
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[CEELNI NIl Proof of the first extension

A combinatorial identity

Lemma

271ST(H) = ZST H/x') (HST(H[W;])>,

where the sum runs over all set-partitions of [/].
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[CEELNI NIl Proof of the first extension

A combinatorial identity

Lemma

271ST(H) = ZST H/x') (HST(H[W;])>,

where the sum runs over all set-partitions of [/].

™ ={{1,2,3},{4,5,6}};

“%’v.
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[CEELNI NIl Proof of the first extension

Progress report

We have “proved:

Theorem

Let Xi,...,X; be random variables with finite moments of order ¢,

[re(Xa, - Xe)| < 27 |[Xalle - - [ Xelle - ST (Gep(Xa, -+ 5 Xe))-

Next step:

Corollary

There exists an absolute constant C such that

|ke(Th)| < (Cé)zn“z.
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[CEELNI NIl Proof of the first extension

A sharp bound on cumulants of T,

Recall that 1¢(Tn) = > ku(Bay,- .-, Ba,).
A1,..., 0

O EEDY 2f—1(ST(Gdep(BAl,...,BAZ))‘.
Al,...,A[

Thus

V. Féray (with PLM, AN) Cumulants and triangles Warwick, 2015—06
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[CEELNI NIl Proof of the first extension

A sharp bound on cumulants of T,

Recall that ko(To) = D ke(Ba,.---.Ba,).

A, A,
Thus
(T <270 Y ‘{(Al,...,Ag) st. T C Gdep(BAl,...,BAZ)}‘.
T tree
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[CEELNI NIl Proof of the first extension

A sharp bound on cumulants of T,

Recall that ko(To) = D ke(Ba,.---.Ba,).

Ag,.., Ay
Thus
(T <270 Y ‘{(Al,...,m) st. T C Gdep(BAl,...,BAZ)}‘.
T tree
Fix a tree. For how many lists B
. . . . . A7

of triangles is it contained in B
Ag

Gdep(BAN‘ . BAZ) ? Bag Ba,

Ba, B
Ba Qe
2 BA5

Warwick, 2015—06 24 / 28
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[CEELNI NIl Proof of the first extension

A sharp bound on cumulants of T,

Recall that ko(To) = D ke(Ba,.---.Ba,).

Ag,.., Ay
Thus
(T <270 Y ‘{(Al,...,m) st. T C Gdep(BAl,...,BAZ)}‘.
T tree
Fix a tree. For how many lists B
. . . . . A7

of triangles is it contained in B
Ag

Gdep(BAN‘ . BAZ) ? Bag Ba,

Ba, B
Ba Qe
2 BA5

@ Choose any triangle for A;: (3) choices ;
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[CEELNI NIl Proof of the first extension

A sharp bound on cumulants of T,

Recall that ko(To) = D ke(Ba,.---.Ba,).

Ag,.., Ay
Thus
(T <270 Y ‘{(Al,...,m) st. T C Gdep(BAl,...,BAl)}‘.
T tree
Fix a tree. For how many lists B
of triangles is it contained in B o
Ag
Gdep(BAN’ . BAZ) ? BA8 BA3
Ba, B
A,
Ba, a

Ba,

@ Choose any triangle for A;: (3) choices ;

@ Ag should have an edge in common with A7: 3 for an edge of A and
n — 2 choices for the other vertex of As = 3n — 6 choices ;
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[CEELNI NIl Proof of the first extension

A sharp bound on cumulants of T,

Recall that ko(To) = D ke(Ba,.---.Ba,).

Ag,.., Ay
Thus
(T <270 Y ‘{(Al,...,m) st. T C Gdep(BAl,...,BAl)}‘.
T tree
Fix a tree. For how many lists B
. . . . . A7

of triangles is it contained in B
Ag

Gdep(BAN’ . BAZ) ? Bag Ba,

Ba, B
Ba Qe
2 BA5

@ Choose any triangle for A;: (3) choices ;

@ Ag should have an edge in common with A7: 3 for an edge of A and
n — 2 choices for the other vertex of As = 3n — 6 choices ;

@ A should have an edge in common with As. Also 3n — 6 choices.

o ...

V. Féray (with PLM, AN) Cumulants and triangles Warwick, 2015—06 24 / 28



[CEELNI NIl Proof of the first extension

A sharp bound on cumulants of T,
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A sharp bound on cumulants of T,

Recall that ko(To) = D ke(Ba,.---.Ba,).

Ag,.., Ay
Thus
(T <270 Y ‘{(Al,...,m) st. T C Gdep(BAl,...,BAl)}‘.
T tree
Fix a tree. For how many lists B
of triangles is it contained in B o
Ag
Gdep(BAN’ . BAZ) ? B BA8 BA3
— Ay B
< (@6 L

@ Choose any triangle for A;: (3) choices ;

@ Ag should have an edge in common with A7: 3 for an edge of A and
n — 2 choices for the other vertex of As = 3n — 6 choices ;

@ A should have an edge in common with As. Also 3n — 6 choices.

° ... |ke(Tp)| < 267152 (’3’) (3n —6)1 < (60)°n**?
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[CEELNI NIl Proof of the first extension

Mod-Gaussian convergence
Let X, = (T, —E(T,))/n®/3, then

log E(exp(2X,)) = Zfig (X,)z' /0!
£>2
=n?362 22+ 1236+ Z n°/3 ko (T,) 2° /01
>4

callit R
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Mod-Gaussian convergence
Let X, = (T, — E(T,))/n°3, then

log E(exp(2X,)) = Zfig (X,)z' /0!
>2
=n?362 22+ 1236+ Z n°/3 ko (T,) 2° /01
>4

callit R

But |R| < 320, n?3=0/3(C) 2" /01 = O(n2/3) locally uniformly for z in
C. Thus -

E(exp(2Xy)) = exp (0?32 22 /2 + L 23 /6) (1 + O(n~?/3)).
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[CEELNI NIl Proof of the first extension

Mod-Gaussian convergence
Let X, = (T, — E(T,))/n°3, then

log E(exp(2X,)) = Z/ﬁg (X,)z' /0!
£>2
=n?362 22+ 1236+ Z n°/3 ko (T,) 2° /01
>4

callit R

But |R| < 320, n?3=0/3(C) 2" /01 = O(n2/3) locally uniformly for z in
C. Thus -

E(exp(2Xy)) = exp (0?32 22 /2 + L 23 /6) (1 + O(n~?/3)).

almost as if X, would be the sum of n?/3 independent standard Gaussian.
— results on normality zone and speed of convergence follow by
adaptation of standard techniques (Berry-Esseen lemma, change of
probability measure).
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Second extension
A word on the proof of the second extension (1/2)

First consider edge-disjoint triangles A1, ..., Ay.

Then, for A C {1,...,¢},

My =E (H BA,-) _ (’(\f;)u
30

i€eA

Notation: (x)x = x(x —1)(x —2)...(x — k+ 1).
We want to prove that
#(Bays---,Ba,) = O(M; 1)

This case is already difficult!
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Second extension
A word on the proof of the second extension (2/2)

Lemma

Define Tg by Ma = [[gca(1+ Tg) ie. To =1+ [[acp MS

[BI—|A]|

Then Tg = O(M, BI*).

Proof: elementary analysis.
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Second extension
A word on the proof of the second extension (2/2)

Lemma

Define Tg by Ma = [Igca(1+ Tg) ie. To =1+ [[acp M

)IBI-lA|

Then Tg = O(M, BI*).

Using moment-cumulant formula,

re(X1, - xg)_zm) [H [Ja+T7s)|.

Aem BCA

Expand and exchange summation

ke(X,. .., X)) = Z(monomial in Tg) Z ()

s
conditions
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Second extension
A word on the proof of the second extension (2/2)

Lemma

Define Tg by Ma = [Igca(1+ Tg) ie. To =1+ [[acp M

)IBI-lA|

Then Tg = O(M, BI*).

Using moment-cumulant formula,

re(X1, - xg)_zm) [H [Ja+T7s)|.

Aem BCA

Expand and exchange summation

ke(X,. .., X)) = Z(monomial in Tg) Z ()

s
conditions

Fact: the sum [...] vanish unless the monomial is O(M:™1). O
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[CEELNCGTNII Ml Second extension

Open questions

@ What about G(n, p,) with p, — 0 and np, — oco. One has:
ke(Tp) < Con® p2 max(np?,1)*"1  (Mikhailov, 1991);
ke(Tp) < (COFn'+2 p3 (FMN, 2014).
Open question: prove or disprove

ke(Ta) < (CO)'n® p max(np?, 1)
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o For G(n, M,), with M, = | p,(5) |, one has
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[CEELNCGTNII Ml Second extension

Open questions

@ What about G(n, p,) with p, — 0 and np, — oco. One has:
ke(Tp) < Con® p2 max(np?,1)*"1  (Mikhailov, 1991);
ke(Tp) < (COFn'+2 p3 (FMN, 2014).
Open question: prove or disprove

ke(Ta) < (CO)'n® p max(np?, 1)

o For G(n, M,), with M, = | p,(5) |, one has
rke(Tn) < Con® p2 max(np?,1)*~1  (F., >2015);
Open question: prove or disprove
ke(Tn) < (CO)“n® p2 max(np3,1)"

@ Future work: Stein's method/Lovasz local lemma with weak
dependency graphs?
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