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What is this talk about ?

Consider some sequence of r.v. Xn (e.g., number of substructures of a
given type in some probabilistic model).

Goal: prove that some Xn satisfies is asymptotically normal, i.e.

Xn−E[Xn]√
Var(Xn)

d→N (0,1).

A powerful tool: analytic methods, in particular bivariate generating
functions and Hwang’s quasi-power theorem.

Problem: the bivariate generating function might be intractable.
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What is this talk about ?

Consider some sequence of r.v. Xn (e.g., number of substructures of a
given type in some probabilistic model).

Goal: prove that some Xn satisfies is asymptotically normal, i.e.

Xn−E[Xn]√
Var(Xn)

d→N (0,1).

Other standard tool: moment (or cumulant) methods.

Today: (weighted) dependency graphs, based on cumulants and
independence (or weak dependencies) between variables.
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Outline of the talk

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion

2 Weighted dependency graphs
Definition and an extended normality criterion
Back to subwords: Markovian texts
Applications in statistical physics
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Dependency graphs A motivating example: substrings in random words

Substrings in random words (1/2)
(following Flajolet, Guivarc’h, Szpankowski, and Vallée, ’01)

Let w be a random word of size n with independent (identically
distributed) letters taken in a finite alphabet A .

Fix a word u, called "pattern" of length `.

An occurrence of u in w is a `-tuple i1 < ·· · < i` s.t. wi1 = u1, . . . ,wi` = u`.

Example: two occurrences of aab in w = aabbabaab (one in blue, one
underlined)

(Variants: consecutive occurrences, allowing gaps of given lengths).
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Substrings in random words (1/2)
(following Flajolet, Guivarc’h, Szpankowski, and Vallée, ’01)

Let w be a random word of size n with independent (identically
distributed) letters taken in a finite alphabet A .

Fix a word u, called "pattern" of length `.

An occurrence of u in w is a `-tuple i1 < ·· · < i` s.t. wi1 = u1, . . . ,wi` = u`.

Example: two occurrences of aab in w = aabbabaab (one in blue, one
underlined)

Question
Asymptotic behaviour of the number Xn of occurrences of u in w?

Motivations: intrusion detection in computer science, discovering
meaningful strings of DNA, ...
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Dependency graphs A motivating example: substrings in random words

Substrings in random words (2/2)

Theorem (FGSV, ’01)

We have
E[Xn]∼C1n

`, Var[Xn]∼C2n
2`−1,

where C1 and C2 are computable constants.
Moreover, if C2 > 0, then Xn is asymptotically normal.

The proof of the asymptotic normality uses the method of moments.

I will sketch it using cumulants and dependency graphs (essentially the
same proof, but presented differently, and in a general context).

Notation: for I ⊆ [n], |I | = `, set YI = 1
[
u occurs at position I in w

]
.

Then Xn =∑
I∈([n]` )

YI .
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Dependency graphs An asymptotic normality criterion

Dependency graphs

Definition (Malyshev, ’80, Petrovskaya/Leontovich, ’82, Janson, ’88)

A graph L with vertex set A is a dependency graph for the family
{Yα,α ∈A} if the following holds for any A1,A2 ⊂A:

there is no edge
between A1 and A2

=⇒ {Yα,α ∈A1} and {Yα,α ∈A2}
are independent

Roughly: there is an edge between pairs of dependent random variables.

Example

Consider our random word problem. Let A= ([n]
`

)
and

{I1, I2} ∈EL iff I1∩ I2 6= ;.
Then L is a dependency graph for the family {YI , I ∈ ([n]

`

)
}.

�� ��Note: L is regular of degree O(n`−1)
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Dependency graphs An asymptotic normality criterion

Janson’s normality criterion

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <M
a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (Janson, 1988)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s.
Then Xn is asymptotically normal.
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Janson’s normality criterion

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <M
a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (Janson, 1988)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s.
Then Xn is asymptotically normal.

Example: For occurrences of u in w , we have

Nn =Θ(n`), Dn =Θ(n`−1) and σn =Θ(n`−1/2),

so that asymptotic normality follows (assuming the variance estimates!).
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Dependency graphs An asymptotic normality criterion

Janson’s normality criterion

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <M
a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (Janson, 1988)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s.
Then Xn is asymptotically normal.

In roughly the same setting (when s = 3), we also have bounds on the
speed of convergence and deviation estimates (see Baldi, Rinott, ’89,
Rinott, ’94 and F., Méliot, Nikeghbali, ’16, ’17).
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Dependency graphs An asymptotic normality criterion

Main tool in the proof: (mixed) cumulants
Definition: mixed cumulants are multilinear functionals defined by

κr
(
X1, . . . ,Xr

)= [t1 · · ·tr ] log
(
E
[
exp

(∑r
j=1 tjXj

)])
.

Examples:

κ1(X ) :=E(X ), κ2(X ,Y ) :=Cov(X ,Y )= E(XY )−E(X )E(Y )

κ3(X ,Y ,Z ) := E(XYZ )−E(XY )E(Z )−E(XZ )E(Y )

−E(YZ )E(X )+2E(X )E(Y )E(Z ).

Notation: κ`(X ) := κ`(X , . . . ,X ).

If a set of variables can be split in two mutually independent sets, then
its mixed cumulant vanishes.

Let σn =
√
Var(Xn). If, for some s ≥ 3 and any r ≥ s, we have

κr (Xn)= o(σr
n), then Xn is asymptotically normal. (Janson, 1988)
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Dependency graphs An asymptotic normality criterion

Sketch of proof of Janson’s normality criterion

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded r.v.; |Yn,i | <M a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

we assume
(
Nn
Dn

)1/s Dn
σn

→ 0 for some s ≥ 3.

Fix r ≥ 1. Then
κr (Xn)=

∑
i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

Each summand is 0, unless the induced graph Ln[i1, · · · , ir ] is connected.

→ at most (r !)2NnD
r−1
n non-zero terms, each of which is bounded by

CrM
r .
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|κr (Xn)| ≤Cr (r !)
2NnD

r−1
n Mr

= o
(
σr
n

)
(for r ≥ s, using the assumption)
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Dependency graphs An asymptotic normality criterion

Applications of dependency graphs to asymptotic normality
results

mathematical modelization of cell populations (Petrovskaya,
Leontovich, 82);

subgraph counts in random graphs (Janson, Baldi, Rinott, Penrose,
88, 89, 95, 03);

Geometric probability: length of k neighbour graphs (Avram,
Bertsimas, Penrose, Yukich, Bárány, Vu, 93, 05 , 07);

pattern occurrences in random permutations (Bóna, Janson,
Hitchenko, Nakamura, Zeilberger, Hofer, 07, 09, 14, 18).

V. Féray (CNRS, IECL) (Weighted) dependency graphs Nancy, 2020–11 12 / 29



Weighted dependency graphs Definition and an extended normality criterion
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Weighted dependency graphs Definition and an extended normality criterion

Motivation: models with "weak dependencies"

In many models, we do not have independence, but only weak
dependencies:

subword occurrences in a text generated by a Markovian source;

subgraph counts in Erdős-Rényi random graphs G (n,M)
(G (n,M): fixed number M of edges);
number of exceedances (i s.t. σ(i)≥ i) in a uniform random
permutation;
patterns in other combinatorial objects, such as multiset permutations,
set partitions, . . . ;
spins or patterns of spins in Ising model.

Goal: extend Janson’s normality criterion, to cover the above frameworks.
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Weighted dependency graphs Definition and an extended normality criterion

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0≡ no edge).

Definition (F., ’18)

Fix C = (Cr )r≥1. A weighted graph L̃ with vertex set A is a C -weighted
dependency graph for the family {Yα,α ∈A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣≤Cr M
(
L̃[α1, · · · ,αr ]

)
.
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We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0≡ no edge).

Definition (F., ’18)

Fix C = (Cr )r≥1. A weighted graph L̃ with vertex set A is a C -weighted
dependency graph for the family {Yα,α ∈A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣≤Cr M
(
L̃[α1, · · · ,αr ]

)
.

Intuition: the smaller the edge weights are, the smaller the cumulant
should be. The edge weights quantify the dependencies between variables.

Unlike for usual dependency graphs, proving that something is a
weighted dependency graph needs work!

This is a simplified version of the definition; some of the applications
need a more general but more technical version.
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A normality criterion for weighted dependency graphs

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <M
a.s.
we have a C -weighted dependency graph L̃n with weighted maximal
degree Dn−1 (with a sequence C = (Cr )r≥1 independent of n).

we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (F., ’18)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s. Then Xn is asymptotically
normal.

Note: if s = 3 and Cr ≤K r (r !)γ, we also have bounds on the speed of
convergence and deviation estimates.
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Weighted dependency graphs Definition and an extended normality criterion

Sketch of proof of the normality criterion (1/2)∣∣κr (Xn)
∣∣≤ ∑

i1,...,ir

∣∣κ(Yn,i1 , · · · ,Yn,ir )
∣∣≤Cr

∑
i1,...,ir

M
(
L̃[i1, · · · , ir ]

)
.

Prim’s algorithm. We can construct the spanning tree
T of L̃[i1, · · · , ir ] of maximal weight as follows:

Start with any vertex j1, e.g. j1 = i1;
take j2 which maximizes the weight of {j1, j2}
and add {j1, j2} to T ;
take j3 which maximizes either the weight of
{j1, j3} or {j2, j3} and add the corresponding edge
to T ; and so on. . .

i3 i4

i1 i2

ε2

ε3

1

ε ε

⇒ there is a reordering (j1, . . . , jr ) of (i1, . . . , ir ) such that

M
(
L̃[i1, · · · , ir ]

)= r∏
t=1

max
(
w({j1, jt }), . . . ,w({jt−1, jt })

)
.
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Sketch of proof of the normality criterion (2/2)
∣∣κr (Xn)

∣∣≤Cr

∑
i1,...,ir

M
(
L̃[i1, · · · , ir ]

)
≤ r !Cr

∑
j1,...,jr

( r∏
t=1

max
(
w({j1, jt }), . . . ,w({jt−1, jt })

))

(reordering argument from the previous slide)

≤ r !Cr

∑
j1,...,jr−1

(
r−1∏
t=1

max
(
w({j1, jt }), . . . ,w({jt−1, jt })

)) ·Sj1,...,jr−1 ,

where

Sj1,...,jr−1 =
∑
jr

max
(
w({j1, jr }), . . . ,w({jr−1, jr })

)

≤∑
jr

w({j1, jr })+·· ·+w({jr−1, jr })= d̃eg(j1)+·· ·+ d̃eg(jr−1)≤ (r −1)Dn

.

Iterating, we get
∣∣κr (Xn)

∣∣≤ r !Cr Nn (r −1)!Dr−1
n . We conclude as in the

usual case.
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Weighted dependency graphs Definition and an extended normality criterion

Stability by powers

Setting:
Let {Yα, α ∈A} be r.v. with C -weighted dependency graph L̃;
fix an integer m≥ 2;
for a multiset B = {α1, · · · ,αm} of elements of A, denote

YB :=Yα1 · · ·Yαm .

Proposition

The set of r.v. {YB } has a C (m)-weighted dependency graph L̃m, where

wtL̃m(YB ,YB ′)= max
α∈B ,α′∈B ′

wtL̃(Yα,Yα′),

where C (m) depends only on C and m.

Convention: wtL̃(Yα,Yα)= 1.
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Stability by powers

Setting:
Let {Yα, α ∈A} be r.v. with C -weighted dependency graph L̃;
fix an integer m≥ 2;
for a multiset B = {α1, · · · ,αm} of elements of A, denote

YB :=Yα1 · · ·Yαm .

Proposition

The set of r.v. {YB } has a C (m)-weighted dependency graph L̃m, where

wtL̃m(YB ,YB ′)= max
α∈B ,α′∈B ′

wtL̃(Yα,Yα′),

where C (m) depends only on C and m.

In short: if we have a dependency graph for some variables Yα, we have
also one for monomials in the Yα.
(And potentially asymptotic normality for polynomials in the Yα).
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Weighted dependency graphs Back to subwords

Transition

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion

2 Weighted dependency graphs
Definition and an extended normality criterion
Back to subwords: Markovian texts
Applications in statistical physics
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Weighted dependency graphs Back to subwords

A weighted dependency graph for Markov chain

Setting:
Let (wi )i≥1 be an irreducible aperiodic Markov chain on a finite space
state A ;
Assume w1 is distributed with the stationary distribution π;
Set Zi ,s = 1wi=s .

Proposition
We have a weighted dependency graph L̃ with wtL̃

(
{Zi ,s ,Zj ,t }

)= |λ2|j−i (for
i < j), where λ2 is the second eigenvalue of the transition matrix.
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A weighted dependency graph for Markov chain

Setting:
Let (wi )i≥1 be an irreducible aperiodic Markov chain on a finite space
state A ;
Assume w1 is distributed with the stationary distribution π;
Set Zi ,s = 1wi=s .

Proposition
We have a weighted dependency graph L̃ with wtL̃

(
{Zi ,s ,Zj ,t }

)= |λ2|j−i (for
i < j), where λ2 is the second eigenvalue of the transition matrix.

Concretely, this means that, for i1 < ·· · < ir ,∣∣κ(Zi1,s1 , . . . ,Zir ,sr )
∣∣≤Cr λ

ir−i1
2 .

It turns out that this was proved by Saulis and Statulevičius (’90)!
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A weighted dependency graph for Markov chain

Setting:
Let (wi )i≥1 be an irreducible aperiodic Markov chain on a finite space
state A ;
Assume w1 is distributed with the stationary distribution π;
Set Zi ,s = 1wi=s .

Proposition
We have a weighted dependency graph L̃ with wtL̃

(
{Zi ,s ,Zj ,t }

)= |λ2|j−i (for
i < j), where λ2 is the second eigenvalue of the transition matrix.

Corollary (using the stability by product)
We have a weighted dependency graph L̃m for monomials
ZI ;S :=Zi1,s1 · · · Zim,sm , with wtL̃m(ZI ;S ,ZJ ,T )= |λ2|md(I ,J),
where md(I ,J) is the minimal distance between I and J.
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Subword occurrences in Markovian text (1/2)

Let (wi )i≥1 be a Markov chain as before and fix a pattern (= a word) u of
length ` on A .

For I = {i1, · · · , i`} ⊂N (i1 < ·· · < i`), we set

YI = 1
[
u occurs at position I in w

]
;

=Zi1,u1 · · ·Zis ,us .

We have a weighted dependency graph for
(
YI , I ∈ ([n]

`

))
, which is a

restriction of the one for the ZI ,S .
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Subword occurrences in Markovian text (2/2)

Let Xn =∑
I YI be the number of occurrences of u in a Markovian text w .

Recall that
(
YI , I ∈ ([n]

`

))
admits a weighted dependency graph.

Can we apply the normality criterion?

M = 1, Nn =
(n
`

)
, and. . .

degree Fix I = {i1, · · · , i`}, we have∑
J

λ
md(I ,J)
2 ≤∑

J

λ
|i1−j1|
2 ≤

(
n

`−1

)∑
j1

λ
|i1−j1|
2 =O(n`−1).

The maximal weighted degree Dn is O(n`−1).
variance σn =

√
Var(Xn)= (C +o(1))n`−1/2, for a computable

constant C (Bourdon, Vallée, ’01).

→ when C > 0, the normality criterion satisfied for s = 3.

Conclusion: when C > 0, the number Xn of occurrences of u in a
Markovian text w is asymptotically normal.

(Answers partially a question of Bourdon–Vallée, ’01).
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Symmetric simple exclusion process (SSEP)
1 1 1

1111

α β

γ δ
τ= (τ1, · · · ,τN) particle configuration with stationary distribution.

Theorem
The complete graph on [N] with weight 1/N on each edge is a weighted
dependency graph for the family {τi ,1≤ i ≤N}.
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Symmetric simple exclusion process (SSEP)
1 1 1

1111

α β

γ δ
τ= (τ1, · · · ,τN) particle configuration with stationary distribution.

Theorem
The complete graph on [N] with weight 1/N on each edge is a weighted
dependency graph for the family {τi ,1≤ i ≤N}.

Concretely, for i1, · · · , ir ,

κ(τi1 , . . . ,τir )=Or (N
−d+1),

where d = |{i1, . . . , ir }|.
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Symmetric simple exclusion process (SSEP)
1 1 1

1111

α β

γ δ
τ= (τ1, · · · ,τN) particle configuration with stationary distribution.

Theorem
The complete graph on [N] with weight 1/N on each edge is a weighted
dependency graph for the family {τi ,1≤ i ≤N}.

Ingredients of the proof
enough to prove the bound for distinct i1, . . . ,ir ;
joint moments of the τi given by matrix ansatz;
this gives an induction formula for cumulants (Derrida, Lebowitz,
Speer, 2006), from which we deduce easily the upper bound.

V. Féray (CNRS, IECL) (Weighted) dependency graphs Nancy, 2020–11 25 / 29



Weighted dependency graphs Applications in statistical physics

An invariance principle

Set XN(t)=
∑Nt

i=1τi be the particle distribution function.

Theorem (F., ’18)

There exists a continuous Gaussian process Z on [0,1] with explicit
covariance function such that, in the space C ([0,1]),

X̃N(t) :=
XN(t)−EXN(t)p

N

d→Z

Essentially similar to a result of Derrida–Enaud–Landim–Olla ’05 on the
fluctuations of the density of particles.

Any interest in asymptotic normality for higher order polynomials in the τi?
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An invariance principle

Set XN(t)=
∑Nt

i=1τi be the particle distribution function.

Theorem (F., ’18)

There exists a continuous Gaussian process Z on [0,1] with explicit
covariance function such that, in the space C ([0,1]),

X̃N(t) :=
XN(t)−EXN(t)p

N

d→Z

Derrida et al.’s result holds more generally for ASEP (A=asymmetric, i.e.
particles jump backwards at rate q < 1 instead of 1).

Question
Is the same weighted graph also a weighted dependency graphs for particles
in ASEP? Or should we use weights 1/|i − j |?
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Ising model

+ − − + + − +
− − − + + − −
+ + − + − + −
− − + − + − −
+ + + − − − +

P(ω) ∝ exp
[−H(ω)

]
;

H(ω) =−β∑
x∼y ωxωy −h

∑
x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε= ε(d ,h,β)> 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x ,y } is a weighted dependency graph for
{σx ,x ∈Zd }
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− − − + + − −
+ + − + − + −
− − + − + − −
+ + + − − − +

P(ω) ∝ exp
[−H(ω)

]
;

H(ω) =−β∑
x∼y ωxωy −h

∑
x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε= ε(d ,h,β)> 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x ,y } is a weighted dependency graph for
{σx ,x ∈Zd }

Concretely, this means that

κ(σx1 , . . . ,σxr )=Or (ε
`T (x1,...,xr )),

where `T (x1, . . . ,xr ) is the smallest length of a tree connecting x1, . . . ,xr .
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Ising model

+ − − + + − +
− − − + + − −
+ + − + − + −
− − + − + − −
+ + + − − − +

P(ω) ∝ exp
[−H(ω)

]
;

H(ω) =−β∑
x∼y ωxωy −h

∑
x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε= ε(d ,h,β)> 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x ,y } is a weighted dependency graph for
{σx ,x ∈Zd }

This was proved by Duneau, Iagolnitzer and Souillard (’74) (with magnetic
field or in very high temperature) and Malyshev and Minlos (’91) in very
low temperature.
Proofs based on cluster expansion. . .
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Ising model

+ − − + + − +
− − − + + − −
+ + − + − + −
− − + − + − −
+ + + − − − +

P(ω) ∝ exp
[−H(ω)

]
;

H(ω) =−β∑
x∼y ωxωy −h

∑
x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε= ε(d ,h,β)> 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x ,y } is a weighted dependency graph for
{σx ,x ∈Zd }

Question: does it hold near the critical point?
(At the critical point, the answer is NO, since already covariances do not
decay exponentially)
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Ising model: asymptotic normality for global patterns

+ − − + + − +
− − − + + ⊕ −
+ ⊕ − + − + −
− − + − + − −
+ + ⊕ − − − +

Circled spins:
occurrence of the +pattern 231

(notion inspired from patterns in permutations.)
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Ising model: asymptotic normality for global patterns

+ − − + + − +
− − − + + ⊕ −
+ ⊕ − + − + −
− − + − + − −
+ + ⊕ − − − +

Circled spins:
occurrence of the +pattern 231

SP
n := number of occurrences of P within Λn = [−n,n]d .

Theorem (Dousse, F., ’19)

Assume Var(SP
n )≥ cst|Λn|2|P |−2+η for η> 0. Then we have SP

n is
asymptotically normal. Moreover, the lower bound of the variance is
fulfilled for patterns of only positive spins (as in the example).
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Conclusion

Dependency graphs are a powerful simple tool to prove asymptotic
normality, particularly for substructure counts in models exhibiting
some independence;

We proposed an extension to handle models without independence,
but with weak dependencies.

Plenty of applications (both for the initial framework and for the
extended one)!

Thank you for your attention!

V. Féray (CNRS, IECL) (Weighted) dependency graphs Nancy, 2020–11 29 / 29



Weighted dependency graphs Applications in statistical physics

Conclusion

Dependency graphs are a powerful simple tool to prove asymptotic
normality, particularly for substructure counts in models exhibiting
some independence;

We proposed an extension to handle models without independence,
but with weak dependencies.

Plenty of applications (both for the initial framework and for the
extended one)!

Thank you for your attention!

V. Féray (CNRS, IECL) (Weighted) dependency graphs Nancy, 2020–11 29 / 29


	Dependency graphs
	A motivating example: substrings in random words
	An asymptotic normality criterion

	Weighted dependency graphs
	Definition and an extended normality criterion
	Back to subwords: Markovian texts
	Applications in statistical physics


