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Introduction

Main topic: random permutations

Classical questions: look at some statistics, like the number of cycles
(of given length), longest increasing subsequences, . . .
(usually for uniform or Ewens distributions)

a more recent approach: look for a limit theorem for the renormalized
"permutation matrix" (interesting for non-uniform or constrained
models).

Here: we consider some constraints, called pattern avoidance.
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Which notion of convergence? Permutons. . .

A permutation π can be represented by its diagram (∼ permutation matrix)
and mapped to a probability measure µπ on [0,1]2, called permuton.

π= 52413= 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

We have a natural notion of limit for such objects: the weak convergence
of measure.
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Permutation patterns

Definition
An occurrence of a pattern τ in σ is a subsequence σi1 . . .σik that is
order-isomorphic to τ, i.e. σis <σit ⇔ τs < τt .

Example (occurrences of 213)

245361
82346175

Visual interpretation

Pattern avoidance is a well-studied concept in enumerative combinatorics!
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Uniform random permutations avoiding some patterns

no constraints Av(231) (©MM) Av(321) (©HRS)
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Detour: an operad structure on permutations

Well-known: the set Sn of permutations of size n is a group for the
composition operation.

Less known: the set
⊎
n≥1Sn of permutations of all sizes is an operad for

the substitution operation.

Definition (substitution)

Let θ be a permutation of size d and π(1), . . . ,π(d) be permutations. The
diagram of the permutation θ[π(1), . . . ,π(d)] is obtained by replacing the
i-th dot in the diagram of θ with the diagram of π(i) (for each i).

2413[132, 21, 1, 12] =
12

= = 24387156
132

21

1
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Simple permutations and substitution decomposition

Definition
A permutation is called simple if it cannot be obtained as a nontrivial
substitution.

Examples:12, 21, 3142, 2413, 25314, , . . .

It’s an analogue notion to that of prime numbers. In both cases, there are
"factorization theorems":

an integer can be uniquely represented as a multiset of prime numbers;
a permutation can be (almost) uniquely represented as a "tree of
permutations" (we call this its substitution decomposition)

We get trees and not multisets since we have an operad structure, and not
a commutative monoid (as for integers).
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Substitution decomposition and separable permutations

= 24387156

2413

12 21 12

21

Inner nodes of the decomposition tree are labelled with simple
permutations.

Proposition

Av(2413,3142) is the set of permutations whose decomposition trees
contain only nodes labelled with 12 and 21.

These are called separable permutations.
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Quizz

12 21 12

21

12

2121

i = 2

j=5

Problem
Given the tree T associated with a
separable permutation σ and integers i < j ,
how to determine whether σ(i)<σ(j)?

Answer: look at the decoration of the first common ancestor between the
i-th leaf and the j-th leaf.
In the example, it is 21 so σ(2)>σ(5).

Write i <T j (resp. i >T j) when i < j and their common ancestor is 12
(resp. 21). We can reconstruct σ from this order:

σ(i)= 1+ ∣∣{j : j <T i }
∣∣
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The limiting object: the Brownian separable permuton

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

(e,S)

7→ <(e,S) 7→ τ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µp = (x ,τ(x))?(Leb([0,1])

1 e is a Brownian excursion and S : LocalMin(e)→ {⊕,ª} is an
assignment of i.i.d. random signs to local minima of e (the probability
to get ⊕ is p ∈ (0,1)).
(the Brownian excursion encodes the limit of the trees, its local
minima corresponding to branching points in the trees)

V. Féray (CNRS, IECL) Permutations aléatoires Pont-à-Mousson, 2020–10 10 / 13



The limiting object: the Brownian separable permuton

x

e(x)
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1 If x < y in [0,1], we set x <(e,S) y if S(argmin[x ,y ] e)=⊕;
and y <(e,S) x if S(argmin[x ,y ] e)=⊕.

2 We define a function τ : [0,1]→ [0,1] by τ(x)= Leb
(
{y : y <(e,S) x}

)
.

3 The Brownian separable permuton µp is the corresponding permuton.
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Limits of separable permutations

Theorem (Bassino-Bouvel-F.-Gerin-Pierrot, 2018)

For each n, let σn be a uniform random separable permutation of size n.
Then µσn converges in distribution to µ1/2.

Similar results for other classes Av(B) (based on the algebraic properties of
the class w.r.t. the operad structure):

uniform random permutations σn in substitution-closed classes Av(B)
tend to µp (under some analytic conditions; p depends on he class).

If Av(B) is finitely generated (i.e. contains finitely many simple), there
is a dichotomy (see next slide; again with some technical conditions).
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The dichotomy for finitely generated classes

"Essentially branching case" "Essentially linear case"
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Any questions? I have one. . .

Let σ be a permutation of size n. Do there exist
polynomials P1, P2, . . . , Pn such that

P1(0)= ·· · =Pn(0)= 0;
for small x < 0, we have

P1(x)<P2(x)< ·· · <Pn(x);

for small x > 0, we have

Pσ(1)(x)<Pσ(2)(x)< ·· · <Pσ(n)(x)?

Intersecting polynomials
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Before I prove Kontsevich’s theorem, let me begin with a

much more elementary observation. Consider the position of the

graph of a single real nonzero polynomial P(x) with respect to

the x-axis, in the neighborhood of 0.

There are two possibilities. Either the graph of P crosses the

x-axis at 0, or it stays on the same side. To distinguish between

these two cases, I introduce the following definition.

Definition. Let P(x) = a0 + a1x + a2x2 +⋯ be a polynomial (or

a formal series). The valuation v(P) of P (at 0) is the smallest

integer k such that ak ≠ 0. By convention, the valuation of the

zero polynomial is ∞.

Clearly, the graph of P crosses the x-axis at 0 if and only if the

valuation v(P) is an odd integer.

If we are given two distinct polynomials P1, P2, the sign of

P1(x)− P2(x) changes at 0 if and only if v(P1 − P2) is odd.

Suppose now that we have three polynomials P1, P2, P3 and

let us look at the possible pictures in the neighborhood of the

origin. The six figures in the margin show that all six permuta-

tions of {1, 2, 3} can be realized if we choose conveniently the

polynomials.

©E. Ghys

Answers in office 221 (Nancy). Thank you for your attention.
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