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Introduction

Main topic: random permutations

Classical questions: look at some statistics, like the number of cycles
(of given length), pattern occurrences, longest increasing
subsequences, . . .
(usually for uniform, Ewens or Mallows distributions)

a more recent approach: look for a limit for the rescaled permutation
matrix; such limits are called permutons.
(interesting for non-uniform models or constrained permutations)

This talk: very biased presentation of the notion of permutons and some
literature on them.
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A few random permutations

Uniform Mallows (P(σ) ∝ qinv(σ)) Sorting network,
half way ( c⃝AHRV ’07)

Uniform random pattern-avoiding permutations
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First part

The theory of permutons
(Hoppen, Kohayakawa, Moreira, Rath, Sampaio, ’13)
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

We have a natural notion of limit for such objects: the weak convergence.
This defines a nice compact Polish space.
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

Note: the projection on µπ on each axis is the Lebesgue measure on [0, 1]
(in other words, µπ has uniform marginals).
→ potential limits also have uniform marginals.

V. Féray (UZH) Random permutations AofA, 2019–06 5 / 30



How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

Definition
A permuton is a probability measure on [0, 1]2 with uniform marginals.

Next few slides: connection with permutation patterns.
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Permutation patterns

Definition
An occurrence of a pattern τ in σ is a subsequence σi1 . . . σik that is
order-isomorphic to τ , i.e. σis < σit ⇔ τs < τt .

Example (occurrences of 2 1 3)

2 4 5 3 6 1
8 2 3 4 6 1 7 5

Visual interpretation
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Pattern density in permutations and permutons

If τ and σ are permutations of size k and n, resp., we set

õcc(τ, σ) :=

(
n
k

)−1
·#

{
occurrences of

τ in σ

}
∈ [0, 1].

In other terms: take k elements uniformly at random in σ, the probability
to find a pattern τ is õcc(τ, σ).

This probabilistic interpretation extends to permutons:
replacing σ with a permuton µ

õcc(τ, µ) := Pµ(U(1), · · · ,U(k) form a pattern τ),

where U(1), · · · ,U(k) are i.i.d. points in [0, 1]2 with
distribution µ. a “231 pattern”

in a permuton
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This probabilistic interpretation extends to permutons:
replacing σ with a permuton µ
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Pattern density convergence and permuton convergence

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013)
For each n ≥ 1, let σn be a permutation of size n. TFAE
(a) µσn converges to some permuton µ.
(b) For every pattern π, the proportion õcc(π, σn) tends to some δπ

Moreover, if both hold, δπ = õcc(π, µ).

Theorem (Bassino-Bouvel-F.-Gerin-Maazoun-Pierrot, 17)
For each n ≥ 1, let σn be a random permutation of size n. TFAE
(a) µσn converges in distribution to some random permuton µ

(warning: random measures around!)
(b) For every pattern π, there is a ∆π ≥ 0 such that

E[õcc(π,σn)]
n→∞−−−→ ∆π.

Moreover, if both hold, ∆π = E[õcc(π,µ)].
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Second part

Some convergent models
of random permutations

(and nice pictures)
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Mallows permutations
Mallows model on Sn: P(σn) ∝ qinv(σn)

n ,
where inv(σ) = #{(i , j) with i < j and σ(i) > σ(j)}.

Theorem (Starr, ’09)
Take qn = 1 − β/n. Then µσ(n) converge to the deterministic permuton
with density

u(x , y) = (β/2) sinh(β/2)(
eβ/4 cosh(β[x − y ]/2)− e−β/4 cosh(β[x + y − 1]/2)

)2 .

Simulation (n = 10000, β = 6) β = 6 β = 2
V. Féray (UZH) Random permutations AofA, 2019–06 10 / 30



Erdős-Szekeres extremal permutations
An Erdős-Szekeres extremal permutation is a permutation of size n2 that
has no monotone subsequence of size n + 1.

Theorem (Romik, ’06)
Let σn be a uniform random Erdős-Szekeres extremal permutation of size
n2. Then σn converges to a deterministic permuton supported by{

x , y ∈ [0, 1]2 : (x2 − y2)2 + 2(x2 + y2) ≤ 3
}

c⃝ Romik
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Random sorting networks
A sorting network is a minimal path going from the identity permutation
to the reverse permutation, switching two adjacent entries at each step.

Random sorting network, c⃝Angel, Holroyd, Romik and Virag (’07)
A formula for the limiting process in the space of permutons was
conjectured by Angel, Holroyd, Romik and Virag (’07) and proved by
Dauvergne (’18).
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And more. . .

Random permutations in grid classes (Bevan ’15), Square
permutations (Borga, Slivken ’19), various exponentially biased
models (Mukherjee ’16, Bouvel/Nicaud/Pivoteau ’19), . . .

Large deviation principle for uniform random permutations in the
space of permutons (Trashorras, ’08, Kenyon, Král, Radin, Winkler,
’15).

Asymptotics of the number of cycles of fixed length (Mukherjee, ’16),
of the length of the longest increasing subsequence (Mueller, Starr,
’13) and of the total displacement (Bevan, Winkler, ’19) in Mallows
permutations using the permuton limit.
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Third part

Limits of permutation classes
with a finite specification

(joint work with Bouvel, Bassino,
Gerin, Maazoun, Pierrot)
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Permutation classes

Definition
A set C of permutations (of all sizes) is a class if for all permutations π in
C, and all patterns τ of π, τ is also in C.

Equivalently, a class is the set of permutations avoiding given patterns.

Traditionally analyzed from an enumerative point of view: how many
permutations of size n are there in a given class?

More recently from a probabilistic point of view: what does a uniform
random permutation in a given class look like?
(Atapour, Bevan, Borga, Dokos, Hoffman, Janson, Liu, Madras,
Miner, Pak, Pehlivan, Rizzolo, Slivken, Stufler, Yldrm, . . . )
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Substitution in permutations (1/2)

Definition of substitution
Let θ be a permutation of size d and π(1), . . . , π(d) be permutations. The
diagram of the permutation θ[π(1), . . . , π(d)] is obtained by replacing the
i-th dot in the diagram of θ with the diagram of π(i) (for each i).

2413[132, 21, 1, 12] =
12

= = 24387156
132

21

1

Definition
A permutation is called simple if it cannot be obtained as a nontrivial
substitution.

Examples: 12, 21, 3142, 2413, 25314, . . .
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Substitution in permutations (2/2)

Proposition (Albert, Atkinson, ’05)
Every permutation σ of size n ≥ 2 can be uniquely decomposed as either:

α[π(1), . . . , π(d)], where α is simple of size d ≥ 4,
12[π(1), π(2)], where π(1) is 12-indecomposable,
21[π(1), π(2)], where π(1) is 21-indecomposable.

Not very interesting for uniform random permutation: the simple
permutation α has typically size n − O(1).

But interesting for permutations in classes! It has been used for
enumerating many classes.
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Classes with finitely many simple permutations (1/2)

Assume we have a finite number of simple permutations in a class C.

First thought: great, the substitution decomposition gives us a system of
equation for the class

C ?
= {•}

⊎
12[Cnot⊕, C]

⊎
21[Cnot⊖, C]

⊎ (⊎
|α|≥4 α[C, . . . , C]

)
Cnot⊕ ?

= {•}
⊎

21[Cnot⊖, C]
⊎ (⊎

|α|≥4 α[C, . . . , C]
)

Cnot⊖ ?
= {•}

⊎
12[Cnot⊕, C]

⊎ (⊎
|α|≥4 α[C, . . . , C]

)
.

not quite, we can create forbidden patterns in the substitution!

→ we need to replace some of the C above by some subfamilies of C,
consider cases, resolve ambiguities and iterate. . .
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Classes with finitely many simple permutations (2/2)

Theorem (Bassino-Bouvel-Pierrot-Pivoteau-Rossin ’17)
Any class C with finitely many simple permutations admits a finite
combinatorial specification of the form

Ci = εi{•} ⊎
⊎

α∈SCi

⊎
(k1,...,k|α|)∈K i

α

α[Ck1 , · · · , Ck|α| ] (0 ≤ i ≤ d) (1)

where the C = C0 ⊃ C1, · · · , Cd and the εi are in {0, 1}.

The system can be obtained algorithmically (implemented by Maazoun).

→ gives an algebraic system of equations for the GF of C.

→ yields a random sampler for the class C (used for simulations in the
introduction).
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Finite specification: the example of Av(132)


C = {•}
⊎

⊕[Cnot⊕, C⟨21⟩]
⊎

⊖[Cnot⊖, C]
Cnot⊕ = {•}

⊎
⊖[Cnot⊖, C]

Cnot⊖ = {•}
⊎

⊕[Cnot⊕, C⟨21⟩]

C⟨21⟩ = {•}
⊎

⊕[Cnot⊕
⟨21⟩ , C⟨21⟩]

Cnot⊕
⟨21⟩ = {•}.

Associated dependency graph indicating families with maximal growth rate
(called critical families):

C

Cnot⊕

critical series

Cnot	

C〈21〉

Cnot⊕
〈21〉
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Main theorem

Theorem (BBFGMP, ’19)
Let C be a family of permutations with a finite analytic specification
(e.g. a permutation class with finitely many simple permutations). Assume
that the dependency graph restricted to critical families is strongly
connected (plus some weak aperiodicity assumption).

essentially linear case If the specification contains no products of critical
families, then a uniform random permutation in the class
converges to an X-permuton with computable parameters.

essentially branching case If the specification contains a product of critical
families, then a uniform random permutation in the class
converges to a Brownian separable permuton with
computable parameters.

Description of the limit permutons and examples in the next few slides. . .
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Is Av(231) essentially linear or branching?



C = {•}
⊎

⊕[Cnot⊕, C⟨21⟩]
⊎

⊖[Cnot⊖, C]
Cnot⊕ = {•}

⊎
⊖[Cnot⊖, C]

Cnot⊖ = {•}
⊎

⊕[Cnot⊕, C⟨21⟩]

C⟨21⟩ = {•}
⊎

⊕[Cnot⊕
⟨21⟩ , C⟨21⟩]

Cnot⊕
⟨21⟩ = {•}.

Critical series: C, Cnot⊕, Cnot⊖.

The specification contains a product of critical classes
−→ essentially branching case.
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The X -permuton

Parameter: a quadruple of sum 1

(pleft
+ , pright

+ , pleft
− , pright

− ).

We set a = pleft
+ + pleft

−
and b = pleft

+ + pright
−

(to ensure the uniform marginal condi-
tion).

(a, b)mass pleft−

mass pleft+

mass pright−

mass pright+

Note: this is a deterministic permuton.
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The essentially linear case: examples

Av(2413, 3142,
2143, 34512) Av(231, 21543) Av(2413, 1243,

2341, 41352, 531642)
Note: in the second (resp. third) case, one (resp. two consecutive)
parameters are 0. Diagonals are also degenerate X -permutons (with 2
opposite or 3 parameters equal to 0).
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The Brownian separable permuton (Maazoun ’17)

Parameter: p ∈ [0, 1]

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

(e,S)

7→ σ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µ = (x , σ(x))⋆(Leb([0, 1])

e is a Brownian excursion and S : LocalMin(e) → {⊕,⊖} is a
independent assignment of signs to local minima of e (the probability
to get a ⊕ is p).
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The Brownian separable permuton (Maazoun ’17)

Parameter: p ∈ [0, 1]

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

(e,S)

7→ σ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µ = (x , σ(x))⋆(Leb([0, 1])

σ : [0, 1] → [0, 1] is the unique Lebesgue preserving function s.t.
(x , y) is an inversion if and only if the sign of min[x ,y ] e is ⊖.
The Brownian separable permuton is the “graph of the function σ”.
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The Brownian separable permuton (Maazoun ’17)

Parameter: p ∈ [0, 1]

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

(e,S)

7→ σ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µ = (x , σ(x))⋆(Leb([0, 1])

Note: this a random permuton. No concentration phenomenon here.

V. Féray (UZH) Random permutations AofA, 2019–06 25 / 30



The essentially branching case: examples

Av(2413, 3142)
separable permutations

Av(2413, 31452,
41253, 41352, 531246) Av(231)

The limit in the last case is a degenerate Brownian permuton with p = 1,
that is the diagonal of the square. This convergence to the diagonal (and
much more precise results) was already known.
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A word on the proofs

1 Reminder: enough to prove that, for any τ ,

E
[
õcc(τ,σn)

]
→ E

[
õcc(τ,ν)

]
,

where ν is the targeted limit random permuton.

2 The RHS can be evaluated easily (elementary for X -permuton, using
some results on Brownian excursion for the Brownian one).

3 The LHS can be computed combinatorially:

E[õcc(π,σn)] =
#{σ ∈ Cn, I ⊂ [n] : patI(σ) = π}(n

k
)
|Cn|

.

We will estimate that through analytic combinatorics (see Benedikt’s
talk for a more probabilistic approach).
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Analytic combinatorics

The strongly connectedness hypothesis ensures that
in the essentially linear case,

C(z) ∼ a 1
1 − z

ρ

, implying |Cn| ∼ aρ−n.

in the branching case,

C(z) ∼ a − b
√

1 − z
ρ , implying |Cn| ∼

b
2
√
π

n3/2ρ−n

The difficulty is to estimate

{#{σ ∈ Cn, I ⊂ [n] : patI(σ) = π}}.

We need to write some equations for the corresponding generating
function and to find the behavior at the singularity.
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A picture of a combinatorial decomposition

(where permutations are encoded by trees thanks to the specification.)
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∅

1 2
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Thank you for your attention

Uniform Mallows (P(σ) ∝ qinv(σ)) Sorting network,
half way ( c⃝AHRV ’07)

Uniform random pattern-avoiding permutations
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Extra slide 1: is the strong connectivity condition
necessary?

Yes!
Here is a class with no simple permutations and a “double X” limit:

Av(2413, 3142, 3412, 214365, 52143, 32541)

We can treat such examples on a case-by-case basis from their finite
specification, but we have no general theorem!
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Extra slide 2: the intensity of the Brownian permuton

Since the Brownian permuton µp is a random measure, we can consider
its intensity measure Eµp, defined by

(Eµp)(R) = E(µ(R)), for any rectangle R ⊆ [0, 1]2.

Theorem (Maazoun ’17)
The intensity measure Eµp has density w.r.t to Lebesgue measure
fp(x , y) =

∫ min(x ,y)

max(0,x+y−1)

3p2(1 − p)2da

2π(a(x − a)(1 − x − y + a)(y − a))3/2
(

p2

a + (1−p)2

(x−a) + p2

(1−x−y+a) +
(1−p)2

(y−a)

)5/2 .

Concretely, if σn tends to µp, then, for any rectangle R ⊆ [0, 1]2

E
[
#{(i , j) ∈ nR : σ(i) = j}

]
∼ n

∫
(x ,y)∈R

fp(x , y)dxdy .
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Extra slide 2bis: picture of Eµp

density of Eµ.4 density of Eµ.5

For p = .5, this function was found (under a different form) by Pak and
Dokos, in the context of doubly alternating Baxter permutations.
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Extra slide 3: underlying random trees

essentially linear case essential branching case
Av(2413, 1243, 2341, 41352, 531642) Av(2413, 31452, 41253, 41352, 531246)
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