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Random permutation factorization Presentation of the problem

Our model

We consider minimal factorizations of a full cycle into transpositions.

Mn := {(τ1, . . . , τn−1) transpositions s.t. τ1τ2 · · · τn−1 = (1, 2, . . . , n)}

Well-known: |Mn| = nn−2 (bijections with Cayley trees, parking functions)

Take a uniform random minimal factorization of size n

(τ1, . . . , τn−1).

We are interested in partial products τ1 · · · τk .
They can be geometrically represented by non-
crossing sets of chords.

Goal: find the limit of these random non-crossing
objects.
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Random permutation factorization Presentation of the problem

Motivations

�
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�

Random minimal

factorizations

�
�

�
�

Random sorting networks
(Angel, Holroyd, Romik, Virag, ’07,

..., Dauvergne ’18)

�
�

�

Random product of

transpositions (Diaconis, . . . )

�
�

�



Random non-crossing subsets
of the disk (Aldous, Kortchemski, . . . )

�
�

�



Combinatorics of transposition
factorizations (Hurwitz numbers, . . . )
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Random permutation factorization Our result

Geometric representations as non-crossing objects

With a minimal factorization (τ1, . . . , τn−1) of size n and an integer
k ≤ n − 1, we associate two non-crossing objects.
Example: take n = 12, k = 6, and(
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)

)
∈ M12

For both constructions, we only consider the first k factors.

First construction F n
k

Each transposition corresponds to an edge.
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Second construction Pn
k

Draw the cycles of the partial product.
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Random permutation factorization Our result

Main result

Theorem (F., Kortchemski, ’18)

There exists a family of random compact subset (Lc)c∈[0,∞] of the unit
disk such that the following holds. (We use Hausdorff metric.)
(i) Assume that Kn → ∞ and Kn√

n
→ c , with c < ∞. Then(

F n
Kn ,P

n
Kn

) (d)−→
n→∞

(Lc ,Lc).

(ii) Assume that Kn√
n
→ ∞ and that n−Kn√

n
→ ∞. Then(

F n
Kn ,P

n
Kn

) (d)−→
n→∞

(L∞,L∞).

(iii) Assume that n−Kn√
n

→ c , with c < ∞. Then

F n
Kn

(d)−→
n→∞

L∞, Pn
Kn

(d)−→
n→∞

Lc .
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Random permutation factorization Our result

What are the limit objects?

L0 is the unit circle.
i.e., according to our theorem, when Kn = o(

√
n), there is no

macroscopic chord in the first Kn factors.

L∞ is Aldous’ Brownian triangulation.
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Random permutation factorization Our result

What are the limit objects?

L0 is the unit circle.
L∞ is Aldous’ Brownian triangulation.
Start from a Brownian excursion X exc

∞ and draw a chord
[e−2πi s , e−2πi t ] for each tunnel (s, t) in X exc

∞ .
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Simulation of X exc
∞ and L∞.
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Random permutation factorization Our result

What are the limit objects?

L0 is the unit circle.
L∞ is Aldous’ Brownian triangulation.
Lc is obtained in a similar way as L∞, except that we start from a
certain Lévy excursion process X exc

c (with discontinuities).
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Simulation of X exc
5 and L5.
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Random permutation factorization Our result

What are the limit objects?

L0 is the unit circle.
L∞ is Aldous’ Brownian triangulation.
Lc is obtained in a similar way as L∞, except that we start from a
certain Lévy excursion process X exc

c (with discontinuities).

About the underlying Lévy process Xt :

Ee−λXt = e
t c2

(
1−

√
1+ 2λ

c

)
+t λc

, λ ≥ 0.

It is spectrally positive, makes infinitely many jumps on all intervals,
Xt = inverse Gaussian process + a negative drift (−ct).
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Random permutation factorization Our result

Illustrating movie

We take a uniform random minimal factorization of size n = 20, 000.

The following movies displays the non-crossing forest F n
Kn

and the
non-crossing partition Pn

Kn
for Kn = t(n − 1) (t varying from 0 to 1);�� ��Movie 1

Our theorem describes the marginals of the above process.
We have no limit result for the process itself.
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Random permutation factorization Our result

A “concrete” corollary

For a transposition τ = (i , j) with i < j , set w(τ) := min(j − i , n + i − j).

Corollary

Let (τ1, . . . , τn−1) be a uniform random factorization of size n. Then the
random variable

n−1 max
1≤i≤Kn

w(τi )

(i) tends to 0 in probability if Kn = o(
√
n);

(ii) tends to some non-trivial random variable ℓc if lim Kn√
n
= c (for c in

(0,+∞]).

The law of ℓ∞ is explicit (computed by Aldous):

1
π

3θ − 1
θ2(1 − θ)2

√
1 − 2θ

11
3≤θ≤1

2
dθ, where ℓ = 2 sin(πθ).

Remarkable that the limit is the same for Kn =
√
n log(n) or Kn = n − 1 !
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Random permutation factorization Proof strategy

Structure of the proof (for Pn
k )

1 The distribution of the random non-crossing partition Pn
k is explicit;

2 We use a bijection T from non-crossing partitions to trees;

3 Combining 1 and 2, we see that T (Pn
k) has the distribution of a

conditioned Galton-Watson tree;

4 We analyse this random tree model.
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Random permutation factorization Proof strategy

An explicit formula for the distribution of Pn
k

Given a non-crossing partition P , we can construct its Kreweras
complement K(P). On an example,
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P ∪ K(P)
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K(P)

Blocks of K(P) = white “faces” between blocks of P

Fact: blocks of P ↔ cycles of σ.
blocks of K(P) ↔ cycles of σ−1 (1 2 . . . n)
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Random permutation factorization Proof strategy

An explicit formula for the distribution of Pn
k

Given a non-crossing partition P , we can construct its Kreweras
complement K(P).

Proposition
Fix 1 ≤ k ≤ n − 1 and let P be a non-crossing partition with n − k blocks.
Then

P (Pn
k = P) =

k!(n − k − 1)!
nn−2 ·

 ∏
B∈P ⊎K(P)

|B||B|−2

(|B| − 1)!

 .

The proof is easy; it relies on the fact that the number of minimal
factorizations of any permutation into transpositions is explicit.
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Random permutation factorization Proof strategy

A bijection T from non-crossing partitions to trees

1 Start from a non-crossing partition;

2 Associate a black vertex to each block, a white vertex to each block of
the Kreweras complement, and join neighbour blocks;
(We get a properly bicolored plane tree with labeled black corners.)

3 Root the resulting tree in the corner n.
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Inverse: label black corners by the order of visit of the contour of trees.
Each block corresponds to the corners of some black vertex.
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Random permutation factorization Proof strategy
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Here, and throughout this talk, black (resp. white) vertices are vertices at
even (resp. odd) height.
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Random permutation factorization Proof strategy

Conditioned Galton-Watson trees

Reminder:
if P is a non-crossing partition of n with n − k blocks,

P (Pn
k = P) ∝

∏
B∈P ⊎K(P)

|B||B|−2

(|B| − 1)!
.

where dv is the out-degree of v (small correction needed at the root).

T has the law of a Galton-Watson tree. . .
conditioned to have n − k black vertices and k + 1 white vertices.

When k = Θ(
√
n), the conditioning event has exponentially small

probability.. . .

→ we see T as a conditioned bi-type Galton-Watson tree, with offspring
distributions depending on n.
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Random permutation factorization Proof strategy

Łukasiewicz paths

1
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1

2 3

4 5

0

i

Li

Start with a tree T and label its black vertices in depth-first search
order.

Łukasiewicz path: L0 = 0 and Li+1 = Li + GCi −1, where GCi is the
number of (black) grandchildren of i .

Why Łukasiewicz paths?

For many models of (bitype) conditioned GW trees, the Łukasiewicz path is
a conditioned random walk, which we can analyse asymptotically.
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Random permutation factorization Proof strategy

Łukasiewicz paths
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In our model, the Łukasiewicz path of T (Pn
Kn

) tends (after normalization)
to the excursion process X exc

c .

Moreover, chords in P asymptotically correspond to tunnels in the
Łukasiewicz path of T (P).

Conclusion: Pn
Kn

tends to Lc .
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Random permutation factorization Further results

Local convergence of trajectories (1/3)

Our "scaling limit" result gives no information on what happens for some
fixed elements, e.g. what is the trajectory of a given i? The number of
transpositions containing it?

1 5 10 15 20 25 30 35 40 45 50 55 59

5

10

15

20

25

30

35

40

45

50

55

60

V. Féray (UZH) Random factorizations Nancy, 2018–10 14 / 17



Random permutation factorization Further results

Local convergence of trajectories (2/3)

We work with factorizations of the cycle

(−⌊(n − 1)/2⌋, . . . , 0, 1, . . . , ⌊n/2⌋)

and look around i = 0:

100 200 300 400 500

-2

0

2

4

Trajectories of all i in {−2,−1, 0, 1, 2}
in a random minimal factorization of size n = 500.
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Random permutation factorization Further results

Local convergence of trajectories (2/3)

We work with factorizations of the cycle

(−⌊(n − 1)/2⌋, . . . , 0, 1, . . . , ⌊n/2⌋)

and look around i = 0:

Theorem (F., Kortchemski)

There is a family (Xi )i∈Z of integer-valued step functions on [0, 1](
X

(n)
i (⌊nt⌋) : 0 ≤ t ≤ 1

)
i∈Z

(d)−→
n→∞

(Xi )i∈Z

holds in distribution (in the sense of convergence of finite dimensional
marginals).

Note: there is a rescaling in time, but not in space.
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Random permutation factorization Further results

Local convergence of trajectories (3/3)

For this we need to study the local convergence around 1 of the edge and
vertex-labelled tree of the factorization.
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4
5

−4

−3

−2

−1

0

Tree of the factorization
(-1,-2), (-4, 5), (1, 5), (2, 3), (-2, 1), (2, 5), (-3,-2), (4, 5), (0, 1)
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Local convergence of trajectories (3/3)

For this we need to study the local convergence around 1 of the edge and
vertex-labelled tree of the factorization.
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Standard: the edge-labelled tree converges to "Kesten tree".

Difficulty: understand the vertex labelling and prove that it’s "local".
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Random permutation factorization Further results

Conclusion

1 Global and local convergence results for uniform random factorizations
of a long cycle into transposition.

2 For the global convergence, we are missing the convergence of the
process of non-crossing partitions, we only have convergence of the
marginals.

3 Factorization models have a very rich combinatorics (Hurwitz
numbers, maps, genomics), but there are almost no probabilistic
results. There is work to do...

Thank you for your attention
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