$\mathsf{Mod}\text{-}\phi$ convergence I

Valentin Féray (joint work with Pierre-Loïc Méliot and Ashkan Nikeghbali)

Institut für Mathematik, Universität Zürich

Workshop on "Cumulants, concentration and superconcentration"

Dec. 6th-8th, 2016

Central limit theorem (CLT) and beyond

- Standard CLT: renormalized sum of i.i.d. variables with finite variance tends towards a Gaussian distribution.
- Many relaxation of the i.i.d. hypothesis: CLT for Markov chains, martingales, mixing processes, m-dependent sequence, "associated" random variables...

Central limit theorem (CLT) and beyond

- Standard CLT: renormalized sum of i.i.d. variables with finite variance tends towards a Gaussian distribution.
- Many relaxation of the i.i.d. hypothesis: CLT for Markov chains, martingales, mixing processes, m-dependent sequence, "associated" random variables...
- We often have companion theorems: deviation probability, concentration inequalities, local limit theorem, speed of convergence. . .

But the companion theorems need extra effort to prove.

Central limit theorem (CLT) and beyond

- Standard CLT: renormalized sum of i.i.d. variables with finite variance tends towards a Gaussian distribution.
- Many relaxation of the i.i.d. hypothesis: CLT for Markov chains, martingales, mixing processes, m-dependent sequence, "associated" random variables...
- We often have companion theorems: deviation probability, concentration inequalities, local limit theorem, speed of convergence...

But the companion theorems need extra effort to prove. Philosophy: Mod- ϕ is a universality class beyond the CLT, which implies some companion theorems.

$\mathsf{Mod}\text{-}\phi$ convergence: definition

Setting:

- D a domain of \mathbb{C} containing 0.
- ullet ϕ infinite divisible distribution with Laplace transform $\exp(\eta(z))$ on D.

Definition (Nikeghbali, Kowalski)

A sequence of real r.v. (X_n) converges mod- ϕ on D with parameter $t_n \to \infty$ and limiting function ψ if, locally uniformly on D,

$$\exp(-t_n \eta(z)) \mathbb{E}(e^{zX_n}) \to \psi(z),$$
 (1)

Informal interpretation:

- $X_n = t_n$ independent copies of ϕ + perturbation encoded in ψ .
- instead of renormalizing the variables as in CLT, we renormalized the Fourier/Laplace transform to get access to the next term.

(this notion has some similarity with Hwang's quasi-powers.)

$\mathsf{Mod} ext{-}\phi$ convergence implies a CLT

Proposition

If (X_n) converges mod- ϕ on D with parameter t_n , then

$$Y_n = \frac{X_n - t_n \eta'(0)}{\sqrt{t_n \eta''(0)}} \longrightarrow_d \mathcal{N}(0,1).$$

Proof: easy, use the mod- ϕ estimate to show that $\mathbb{E}(e^{\zeta Y_n})$ converges pointwise to $e^{\zeta^2/2}$.

Philosophy: Many classical ways of proving CLTs can be adapted to prove $\text{mod-}\phi$ convergence.

(In particular, in all examples in the next few slides, the CLT is a well-known result.)

Outline of today's talk

- $oldsymbol{1}$ Introduction: CLT and mod- ϕ convergence
- $oxed{2}$ Examples of mod- ϕ convergence sequences
 - ullet How to prove mod- ϕ convergence
- Companion theorems
 - Speed of convergence
 - Deviation and normality zone

Examples with an explicit generating function (1/3)

We start with a trivial example.

Let $Y_1, Y_2,...$ be i.i.d. with law ϕ and W_n a sequence of r.v., independent from the Y, whose Laplace transform converges to that of W on D. Set $X_n = W_n + \sum_{i=1}^n Y_i$. Then

$$\mathbb{E}(\mathrm{e}^{zX_n}) = \mathrm{e}^{n\,\eta(z)}\,\mathbb{E}(\mathrm{e}^{zW_n}) = \mathrm{e}^{n\,\eta(z)}\,(\mathbb{E}(\mathrm{e}^{zW}) + o(1)).$$

Thus X_n converges mod- ϕ with parameters $t_n = n$ and limiting function $\psi(z) = \mathbb{E}(e^{zW})$.

Examples with an explicit generating function (2/3)

Let X_n be the number of cycles in a uniform random permutation.

$$\mathbb{E}[\mathrm{e}^{zX_n}] = \prod_{i=1}^n \left(1 + \frac{\mathrm{e}^z - 1}{i}\right) = \mathrm{e}^{H_n(\mathrm{e}^z - 1)} \, \prod_{i=1}^n \frac{1 + \frac{\mathrm{e}^z - 1}{i}}{\mathrm{e}^{\frac{\mathrm{e}^z - 1}{i}}}.$$

where $H_n = \sum_{i=1}^n \frac{1}{i} = \log n + \gamma + \mathcal{O}(n^{-1})$.

Examples with an explicit generating function (2/3)

Let X_n be the number of cycles in a uniform random permutation.

$$\mathbb{E}[\mathrm{e}^{zX_n}] = \prod_{i=1}^n \left(1 + \frac{\mathrm{e}^z - 1}{i}\right) = \mathrm{e}^{H_n(\mathrm{e}^z - 1)} \, \prod_{i=1}^n \frac{1 + \frac{\mathrm{e}^z - 1}{i}}{\mathrm{e}^{\frac{\mathrm{e}^z - 1}{i}}}.$$

where $H_n = \sum_{i=1}^n \frac{1}{i} = \log n + \gamma + \mathcal{O}(n^{-1})$. The product on the right-hand side converges locally uniformly on \mathbb{C} to an infinite product, which turns out to be related to the Γ function,

$$\mathbb{E}[\mathrm{e}^{zX_n}]\,\mathrm{e}^{-(\mathrm{e}^z-1)\log n}\to\mathrm{e}^{\gamma\,(\mathrm{e}^z-1)}\prod_{i=1}^{\infty}\frac{1+\frac{\mathrm{e}^z-1}{i}}{\mathrm{e}^{\frac{\mathrm{e}^z-1}{i}}}=\frac{1}{\Gamma(\mathrm{e}^z)}$$

locally uniformly, *i.e.*, one has mod-Poisson convergence on \mathbb{C} with parameters $t_n = \log n$ and limiting function $1/\Gamma(e^z)$.

Examples with an explicit generating function (3/3)

Other examples with explicit generating functions:

• $\log(|\det(\operatorname{Id}-U_n)|)$ where U_n is an unitary Haar-distributed random matrices. It converges mod-Gaussian on $\{\operatorname{Re}(z)>-1\}$ with parameter $\frac{\log n}{2}$ and limiting function $\Psi_1(z)=\frac{G(1+z/2)^2}{G(1+z)}$ (G is the G-Barnes function).

Examples with an explicit generating function (3/3)

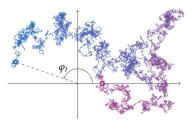
Other examples with explicit generating functions:

- $\log(|\det(\operatorname{Id}-U_n)|)$ where U_n is an unitary Haar-distributed random matrices. It converges mod-Gaussian on $\{\operatorname{Re}(z)>-1\}$ with parameter $\frac{\log n}{2}$ and limiting function $\Psi_1(z)=\frac{G(1+z/2)^2}{G(1+z)}$ (G is the G-Barnes function).
- \approx Let M_n be a GUE matrix. Then $|\det(M_n)| \mathbb{E}(|\det(M_n)|)$ converges mod-Gaussian on $\{|z| < 1\}$ with parameter $t_n \sim \frac{1}{2}\log(n)$ and same limiting function $\Psi_1(z)$ (Döring, Eichelsbacher, 2013).

Examples with an explicit generating function (3/3)

Other examples with explicit generating functions:

- $\log(|\det(\operatorname{Id}-U_n)|)$ where U_n is an unitary Haar-distributed random matrices. It converges mod-Gaussian on $\{\operatorname{Re}(z)>-1\}$ with parameter $\frac{\log n}{2}$ and limiting function $\Psi_1(z)=\frac{G(1+z/2)^2}{G(1+z)}$ (G is the G-Barnes function).
- \approx Let M_n be a GUE matrix. Then $|\det(M_n)| \mathbb{E}(|\det(M_n)|)$ converges mod-Gaussian on $\{|z| < 1\}$ with parameter $t_n \sim \frac{1}{2}\log(n)$ and same limiting function $\Psi_1(z)$ (Döring, Eichelsbacher, 2013).
- φ_t is the winding number of a Brownian motion starting at 1. It "converges mod-Cauchy on $i\mathbb{R}$ " with parameter $\frac{\log(8t)}{2}$ and limiting function $\Psi_2(i\zeta) = \frac{\sqrt{\pi}}{\Gamma((|\zeta|+1)/2)}$.



Examples with an explicit **bivariate** generating function (overview)

Number $\omega(k)$ of prime divisors of the integer k

$$\sum_{k \geq 1} \frac{\mathrm{e}^{z\omega(k)}}{k^s} = \prod_{p} \left(1 + \frac{\mathrm{e}^z}{p^s(1 - p^{-s})} \right).$$

 $\Omega_n = \omega(k)$, for a uniform random positive integer $k \leq n$.

Examples with an explicit **bivariate** generating function (overview)

Number $\omega(k)$ of prime divisors of the integer k

$$\sum_{k\geq 1} \frac{\mathrm{e}^{z\omega(k)}}{k^s} = \prod_{p} \left(1 + \frac{\mathrm{e}^z}{p^s(1-p^{-s})} \right).$$

 $\Omega_n = \omega(k)$, for a uniform random positive integer $k \leq n$.

Number of ascents A_n in a random permutation of size n

$$\sum_{n>1} \mathbb{E}(e^{zA_n})t^n = \frac{e^z - 1}{e^z - e^{t(e^z - 1)}}.$$

Examples with an explicit **bivariate** generating function (overview)

Number $\omega(k)$ of prime divisors of the integer k

$$\sum_{k \geq 1} \frac{\mathrm{e}^{z\omega(k)}}{k^s} = \prod_p \left(1 + \frac{\mathrm{e}^z}{p^s(1-p^{-s})} \right). \quad \Omega_n \text{ converges mod-Poisson}$$

 $\Omega_n = \omega(k)$, for a uniform random positive integer $k \leq n$.

Number of ascents A_n in a random permutation of size n

$$\sum_{n\geq 1}\mathbb{E}(\mathrm{e}^{zA_n})t^n=\frac{\mathrm{e}^z-1}{\mathrm{e}^z-\mathrm{e}^{t(e^z-1)}}.\quad A_n\text{ "converges mod-}U([0,1])\text{"}$$

In both cases one can extract the Laplace transform of Ω_n or A_n by a path integral and study asymptotics.

V. Féray (UZH)

A central limit theorem due to Harper

Theorem (Harper, 1967)

Let X_n be a \mathbb{N} -valued random variable such that $P_n(t) = \mathbb{E}(t^{X_n})$ has nonpositive real roots. Assume $\text{Var}(X_n) \to \infty$. Then

$$\frac{X_n - \mathbb{E}(X_n)}{\sqrt{\mathsf{Var}(X_n)}} \longrightarrow_d \mathcal{N}(0,1).$$

Example: X_n is the number of blocks of a uniform random set-partitions. (One can prove that

$$P_n(t)e^t = \operatorname{cst}_n t \frac{d}{dt} (P_{n-1}(t)e^t)$$

and apply Rolle's theorem inductively.)

Mod-Gaussian convergence in Harper's theorem

Theorem (FMN, 2013-2017)

Let X_n be a \mathbb{N} -valued random variable such that $P_n(t) = \mathbb{E}(t^{X_n})$ is a polynomial with nonpositive real roots. Denote $\sigma_n^2 = \operatorname{Var}(X_n)$ and $L_n^3 = \kappa_3(X_n)$ the second and third cumulants of X_n and assume $1 \ll L_n \ll \sigma_n \ll L_n^2$.

Then $\frac{X_n - \mathbb{E}(X_n)}{L_n}$ converges mod-Gaussian on \mathbb{C} with parameters $t_n = \frac{\sigma_n^2}{L_n^2}$ and limiting function $\psi = \exp(z^3/6)$.

Idea of proof: X_n write as a sum of N_n Bernoulli variables B_k (of unknown parameters). Thus

$$\mathbb{E}(\mathrm{e}^{zX_n}) = \prod_{k=1}^{N_n} \mathbb{E}(\mathrm{e}^{zB_k})$$

and we do Taylor expansions on the right-hand side.

Mod-Gaussian convergence in Harper's theorem

Theorem (FMN, 2013-2017)

Let X_n be a \mathbb{N} -valued random variable such that $P_n(t) = \mathbb{E}(t^{X_n})$ is a polynomial with nonpositive real roots. Denote $\sigma_n^2 = \text{Var}(X_n)$ and $L_n^3 = \kappa_3(X_n)$ the second and third cumulants of X_n and assume $1 \ll L_n \ll \sigma_n \ll L_n^2$.

Then $X_n = \mathbb{E}(X_n)$ converges mode Gaussian on \mathbb{C} with parameters $t_n = \frac{\sigma_n^2}{\sigma_n^2}$ and

Then $\frac{X_n - \mathbb{E}(X_n)}{L_n}$ converges mod-Gaussian on \mathbb{C} with parameters $t_n = \frac{\sigma_n^2}{L_n^2}$ and limiting function $\psi = \exp(z^3/6)$.

Example: X_n is the number of blocks of a uniform random set-partitions. (The third cumulant estimate is not trivial.)

Adapting the method of moments (1/3)

Instead of moments we use cumulants $\kappa_r(X_n)$. If X is a random variable, its cumulants are the coefficients of

$$\log \mathbb{E}[e^{zX}] = \sum_{r=1}^{\infty} \frac{\kappa^{(r)}(X)}{r!} z^{r}.$$

First cumulants:

$$egin{aligned} \kappa_1(X) &:= \mathbb{E}(X), \ \kappa_2(X) &:= \mathsf{Var}(X,Y) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 \ \kappa_3(X) &:= \mathbb{E}(X^3) - 3\mathbb{E}(X^2)\mathbb{E}(X) + 2\mathbb{E}(X)^3. \end{aligned}$$

Fact: Y_n converge in distribution to $\mathcal{N}(0,1)$ if $Var(Y_n) \to 1$ and all other cumulants tend to 0.

Adapting the method of moments (2/3)

Definition (uniform control on cumulants)

A sequence (S_n) admits a uniform control on cumulants with DNA (D_n, N_n, A) and limits σ^2 and L if $D_n = o(N_n)$, $N_n \to +\infty$ and

$$\forall r \geq 2, \ |\kappa^{(r)}(S_n)| \leq N_n (2D_n)^{r-1} r^{r-2} A^r; \frac{\kappa^{(2)}(S_n)}{N_n D_n} = (\sigma_n)^2 \to_{n \to \infty} \sigma^2; \qquad \frac{\kappa^{(3)}(S_n)}{N_n (D_n)^2} = L_n \to_{n \to \infty} L.$$

Adapting the method of moments (2/3)

Definition (uniform control on cumulants)

A sequence (S_n) admits a uniform control on cumulants with DNA (D_n, N_n, A) and limits σ^2 and L if $D_n = o(N_n)$, $N_n \to +\infty$ and

$$\forall r \geq 2, \ |\kappa^{(r)}(S_n)| \leq N_n (2D_n)^{r-1} r^{r-2} A^r; \frac{\kappa^{(2)}(S_n)}{N_n D_n} = (\sigma_n)^2 \to_{n \to \infty} \sigma^2; \qquad \frac{\kappa^{(3)}(S_n)}{N_n (D_n)^2} = L_n \to_{n \to \infty} L.$$

Proposition

Take (S_n) admits a uniform control on cumulants with $\sigma^2 > 0$. Then, $X_n := \frac{S_n - \mathbb{E}[S_n]}{(N_n)^{\frac{1}{3}}(D_n)^{\frac{2}{3}}}$ converges mod-Gaussian on \mathbb{C} , with $t_n = (\sigma_n)^2 \left(\frac{N_n}{D_n}\right)^{\frac{1}{3}}$ and limiting function $\psi(z) = \exp(\frac{Lz^3}{6})$.

Adapting the method of moments (2/3)

Definition (uniform control on cumulants)

A sequence (S_n) admits a uniform control on cumulants with DNA (D_n, N_n, A) and limits σ^2 and L if $D_n = o(N_n)$, $N_n \to +\infty$ and

$$\forall r \geq 2, \ |\kappa^{(r)}(S_n)| \leq N_n (2D_n)^{r-1} r^{r-2} A^r; \frac{\kappa^{(2)}(S_n)}{N_n D_n} = (\sigma_n)^2 \to_{n \to \infty} \sigma^2; \qquad \frac{\kappa^{(3)}(S_n)}{N_n (D_n)^2} = L_n \to_{n \to \infty} L.$$

Remark

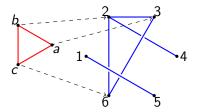
Uniform bounds on cumulants have been studied (in more generality) by Saulis and Statulevičius (1991) (see Döring-Eichelsbacher 2012, 2013, for numerous applications).

In this context, we don't have new theoretical results, but new examples.

Adapting the method of moments (3/3): a new example

If $F=(V_F,E_F)$ and $G=(V_G,E_G)$ are finite graphs, a copy of F in G is a map $\psi:V_F\to V_G$ such that

$$\forall e = \{x, y\} \in E_F, \ \{\psi(x), \psi(y)\} \in E_G.$$



Proposition

The number of copies of a fixed F in G(n,p) (p fixed) admits a uniform control on cumulants with DNA $(n^{|V_G|-2}, n^{|V_G|}, 1)$ and $\sigma^2 > 0$.

(behind this: dependency graphs, more on that and more examples tomorrow!)

V. Féray (UZH)

Transition

Reminder: if X_n converges mod- ϕ , then $Y_n = \frac{X_n - t_n \eta'(0)}{\sqrt{t_n \eta''(0)}}$ converges to a standard Gaussian, i.e., for a fixed y,

$$\lim_{n\to\infty} \mathbb{P}(Y_n \ge y) = \frac{1}{\sqrt{2\pi}} \int_y^\infty e^{-u^2/2} du =: F_{\mathcal{N}}(y).$$
 (CLT)

Main questions

Speed of convergence What is the error term (uniformly in y) in (CLT)? Deviation probability What if $y \to \infty$? The limit is 0 but can we give an equivalent?

A first bound for the speed of convergence

Proposition (FMN, 2013-2017)

Let X_n converges mod- ϕ on a domain D containing $i\mathbb{R}$. Assume ϕ non-lattice. Then

$$\mathbb{P}(Y_n \geq y) = F_{\mathcal{N}}(y) + \frac{\psi'(0)}{\sqrt{t_n \eta''(0)}} F_1(y) + \frac{\eta'''(0)}{6\sqrt{t_n (\eta''(0))^3}} F_2(y) + o(\frac{1}{\sqrt{n}}),$$

for explicit functions $F_1(y)$ and $F_2(y)$ (Gaussian integrals). In particular, the error term in (CLT) is $\mathcal{O}(t_n^{-1/2})$ and we have an equivalent unless $\psi'(0) = \eta'''(0) = 0$.

 \rightarrow Tight bounds for log(det(Id $-U_n$)), for A_n , but not for triangle count (see later). . .

Bound on speed of convergence: ideas of proof

(Close to Feller, 1971, for the i.i.d. case.)

Standard tool in this context: Berry's inequality for centered variables

$$|F(y)-G(y)|\leq \frac{1}{\pi}\int_{-T}^{T}\left|\frac{f^*(\zeta)-g^*(\zeta)}{\zeta}\right|\,d\zeta+\frac{24m}{\pi T}.$$

F and G are distribution functions; f^* and g^* the Fourier transform of the corresponding laws; m a bound on the density g.

Bound on speed of convergence: ideas of proof

(Close to Feller, 1971, for the i.i.d. case.)

Standard tool in this context: Berry's inequality for centered variables

$$|F(y)-G(y)|\leq \frac{1}{\pi}\int_{-T}^{T}\left|\frac{f^*(\zeta)-g^*(\zeta)}{\zeta}\right|\,d\zeta+\frac{24m}{\pi T}.$$

F and G are distribution functions; f^* and g^* the Fourier transform of the corresponding laws; m a bound on the density g.

Take $F_n(y) = \mathbb{P}(Y_n \geq y)$ and

$$G_n(y) = \int_{-\infty}^{y} \left(1 + \frac{\psi'(0)}{\sqrt{t_n \eta''(0)}} u + \frac{\eta'''(0)}{6\sqrt{t_n (\eta''(0))^3}} (u^3 - 3u) \right) g(u) du.$$

The mod- ϕ estimate allows you to control the integral for $T = \Delta t_n^{1/2}$.

(For $\zeta \ll t_n^{1/2}$, $f^*(\zeta) \sim g^*(\zeta)$, for $\zeta \approx t_n^{1/2}$, both terms are small.)

Make n tends to infinity and then Δ .

V. Féray (UZH)

Speed of convergence for triangles in random graphs

Let T_n be the number of copies of $F = K_3$ in G(n, p).

- Our bound gives an error term $\mathcal{O}(n^{-1/3})$.
- With a result of Rinott (1994), we can get $O(n^{-1})$ (see also Krokowski, Reichenbachs and Thaele, 2015).

Speed of convergence for triangles in random graphs

Let T_n be the number of copies of $F = K_3$ in G(n, p).

- Our bound gives an error term $\mathcal{O}(n^{-1/3})$.
- With a result of Rinott (1994), we can get $O(n^{-1})$ (see also Krokowski, Reichenbachs and Thaele, 2015).

Question

Can we improve our bounds in this case?

A better bound from uniform control on cumulants

Proposition (Saulis, Statelivičius, 1991, FMN, 2017)

Let (S_n) be a sequence with a uniform control on cumulants with DNA (D_n, N_n, A) with $\sigma^2 > 0$.

(In particular, $|\kappa^{(r)}(S_n)| \leq N_n (2D_n)^{r-1} r^{r-2} A^r$.)

Then the error term in (CLT) is $\mathcal{O}(t_n^{-3/2}) = \mathcal{O}(\sqrt{D_n/N_n})$.

In case of triangles, we get $\mathcal{O}(n^{-1})$ as Rinott (1994) or Krokowski, Reichenbachs and Thaele (2015).

A better bound from uniform control on cumulants

Proposition (Saulis, Statelivičius, 1991, FMN, 2017)

Let (S_n) be a sequence with a uniform control on cumulants with DNA (D_n, N_n, A) with $\sigma^2 > 0$.

(In particular, $|\kappa^{(r)}(S_n)| \leq N_n (2D_n)^{r-1} r^{r-2} A^r$.)

Then the error term in (CLT) is $\mathcal{O}(t_n^{-3/2}) = \mathcal{O}(\sqrt{D_n/N_n})$.

In case of triangles, we get $\mathcal{O}(n^{-1})$ as Rinott (1994) or Krokowski, Reichenbachs and Thaele (2015).

Proof: again Berry's inequality

$$|F(x)-G(x)|\leq \frac{1}{\pi}\int_{-T}^{T}\left|\frac{f^*(\zeta)-g^*(\zeta)}{\zeta}\right|\ d\zeta+\frac{24m}{\pi T}.$$

but we have a better control on $f^*(\zeta)$ and thus we can choose $T=t_n^{3/2}$.

A better bound from uniform control on cumulants

Proposition (Saulis, Statelivičius, 1991, FMN, 2017)

Let (S_n) be a sequence with a uniform control on cumulants with DNA (D_n, N_n, A) with $\sigma^2 > 0$.

(In particular, $|\kappa^{(r)}(S_n)| \leq N_n (2D_n)^{r-1} r^{r-2} A^r$.)

Then the error term in (CLT) is $\mathcal{O}(t_n^{-3/2}) = \mathcal{O}(\sqrt{D_n/N_n})$.

In case of triangles, we get $\mathcal{O}(n^{-1})$ as Rinott (1994) or Krokowski, Reichenbachs and Thaele (2015).

Our statement is a bit more general: holds in the context of mod-stable convergence with additional control of the Laplace transform.

Example: winding number φ_t of a Brownian motion converges to a Cauchy law after renormalization at speed $\mathcal{O}(t_n) = \mathcal{O}(\log n)$.

Deviation probability

Theorem (FMN, 2013-2017)

Assume X_n converges mod- ϕ (ϕ non-lattice) on a strip $\{|Re(z)| \leq C\}$. Let x_n bounded by C with $x_n \gg t_n^{-1/2}$. Then

$$\mathbb{P}\big(X_n - t_n \eta'(0) \geq t_n x_n\big) \sim_{n \to \infty} \frac{\exp(-t_n F(x_n))}{h_n \sqrt{2\pi t_n \eta''(h_n)}} \psi(h_n)(1 + o(1)).$$

Here $F(x) = \sup_{h \in \mathbb{R}} (hx - \eta(h))$ is the Legendre Fenchel transform of η and h_n is the maximizer for $F(x_n)$.

Deviation probability

Theorem (FMN, 2013-2017)

Assume X_n converges mod- ϕ (ϕ non-lattice) on a strip $\{|Re(z)| \leq C\}$. Let x_n bounded by C with $x_n \gg t_n^{-1/2}$. Then

$$\mathbb{P}\big(X_n-t_n\eta'(0)\geq t_nx_n\big)\sim_{n\to\infty} \frac{\exp(-t_nF(x_n))}{h_n\sqrt{2\pi t_n\eta''(h_n)}}\psi(h_n)(1+o(1)).$$

Standard proof strategy: applying speed of convergence result to the exponentially tilted variables \widetilde{X}_n :

$$\mathbb{P}[\widetilde{X}_n \in du] = \frac{\mathbb{E}^{hu}}{\varphi_{X_n}(h)} \mathbb{P}[X_n \in du].$$

 \widetilde{X}_n also converge mod- ϕ : its Laplace transform is simply $\mathbb{E}[\mathrm{e}^{z\,\widetilde{X}_n}] = \frac{\mathbb{E}[\mathrm{e}^{(z+h)\,X_n}]}{\mathbb{E}[\mathrm{e}^{h\,X_n}]}.$

Deviation probability

Theorem (FMN, 2013-2017)

Assume X_n converges mod- ϕ (ϕ non-lattice) on a strip $\{|Re(z)| \leq C\}$. Let x_n bounded by C with $x_n \gg t_n^{-1/2}$. Then

$$\mathbb{P}\big(X_n - t_n\eta'(0) \geq t_nx_n\big) \sim_{n \to \infty} \frac{\exp(-t_nF(x_n))}{h_n\sqrt{2\pi t_n\eta''(h_n)}} \psi(h_n)(1+o(1)).$$

Similar result for lattice distributions ϕ : replace h in denominator by $e^h - 1$.

Normality zone

Definition

We say that Y_n has a normality zone $o(a_n)$ if (CLT) gives an equivalent of the tail probability for $y = o(a_n)$ but not for $y = O(a_n)$.

Proposition

Let X_n converges mod- ϕ on a strip $\{|Re(z)| \leq C\}$. Then the normality zone of $\frac{X_n - t_n \eta'(0)}{\sqrt{t_n \eta''(0)}}$ is $o(t_n^{1/2 - 1/m})$, where $m \geq 3$ is minimal such that $\eta^{(m)} \neq 0$. If ϕ is Gaussian, $m = \infty$ by convention, but we need to assume that $\psi \not\equiv 1$.

• Let T_n be the number of copies of $F = K_3$ in G(n, p). Then

$$\mathbb{P}\big[T_n \ge n^3 p^3 + n^2 (v - 3p^3)\big] \sim \sqrt{\frac{9p^5 (1-p)}{\pi v^2}} \exp\left(-\frac{v^2}{36 p^5 (1-p)} + \frac{(7-8p) v^3}{324 n p^8 (1-p)^2}\right)$$
 for $1 \ll v = O(n^{2/3})$.

• Let T_n be the number of copies of $F = K_3$ in G(n, p). Then

$$\mathbb{P}\big[T_n \ge n^3 p^3 + n^2 (v - 3p^3)\big] \sim \sqrt{\frac{9p^5 (1-p)}{\pi v^2}} \, \exp\!\left(-\frac{v^2}{36 \, p^5 (1-p)} + \frac{(7-8p) \, v^3}{324 \, n \, p^8 (1-p)^2}\right)$$
 for $1 \ll v = O(n^{2/3})$.

• Let A_n be the number of ascents in a random permutation of size n.

$$\mathbb{P}\left[A_n \ge \frac{n+1}{2} + \sqrt{\frac{n+1}{12}} y\right] = \frac{(1+o(1))}{y\sqrt{2\pi}} \exp\left(-\frac{y^2}{2} + \frac{y^4}{120(n+1)}\right)$$

for any positive y with $y = o(n^{\frac{5}{12}})$.

for $1 \ll v = O(n^{2/3})$.

- Let T_n be the number of copies of $F = K_3$ in G(n, p). Then $\mathbb{P} \left[T_n \ge n^3 p^3 + n^2 (v 3p^3) \right] \sim \sqrt{\frac{9p^5 (1-p)}{\pi v^2}} \exp \left(-\frac{v^2}{36 p^5 (1-p)} + \frac{(7-8p) v^3}{324 n p^8 (1-p)^2} \right)$
- Let A_n be the number of ascents in a random permutation of size n.

$$\mathbb{P}\left[A_n \ge \frac{n+1}{2} + \sqrt{\frac{n+1}{12}}\,y\right] = \frac{(1+o(1))}{y\sqrt{2\pi}}\,\exp\left(-\frac{y^2}{2} + \frac{y^4}{120(n+1)}\right)$$

for any positive y with $y = o(n^{\frac{5}{12}})$.

• Let U_n be Haar distributed in the unitary group U(n), one has: for $x_n \gg (\log n)^{-1/2}$ bounded,

$$\mathbb{P}_n\Big[\,|\det(\mathsf{Id} - U_n)| \geq n^{\frac{x_n}{2}}\Big] = \frac{G(1+\frac{x_n}{2})^2}{G(1+x_n)}\,\frac{1}{x_n\,n^{\frac{x_n^2}{4}}\,\sqrt{\pi\log n}}\,(1+o(1)).$$

• Let T_n be the number of copies of $F = K_3$ in G(n, p). Then

$$\mathbb{P}\big[T_n \ge n^3 p^3 + n^2 (\nu - 3p^3)\big] \sim \sqrt{\frac{9p^5(1-p)}{\pi \nu^2}} \, \exp\!\left(-\frac{\nu^2}{36 \, p^5(1-p)} + \frac{(7-8p) \, \nu^3}{324 \, n \, p^8(1-p)^2}\right)$$
 for $1 \ll \nu = O(n^{2/3})$.

• Let A_n be the number of ascents in a random permutation of size n.

$$\mathbb{P}\left[A_n \ge \frac{n+1}{2} + \sqrt{\frac{n+1}{12}}\,y\right] = \frac{(1+o(1))}{y\sqrt{2\pi}}\,\exp\left(-\frac{y^2}{2} + \frac{y^4}{120(n+1)}\right)$$

for any positive y with $y = o(n^{\frac{5}{12}})$.

• Let U_n be Haar distributed in the unitary group U(n), one has: for $x_n \gg (\log n)^{-1/2}$ bounded,

$$\mathbb{P}_n\Big[\,|\det(\mathsf{Id} - U_n)| \geq n^{\frac{x_n}{2}}\Big] = \frac{G(1+\frac{x_n}{2})^2}{G(1+x_n)}\,\frac{1}{x_n\,n^{\frac{x_n^2}{4}}\,\sqrt{\pi\log n}}\,(1+o(1)).$$

(We also have estimates for negative deviations in all cases.)

V. Féray (UZH)

Conclusion

Future work:

- Concentration estimates, local limit theorems. . .
- Prove mod- ϕ convergence in other contexts where the CLT is known: martingales, Stein exchangeable pairs, linear statistics of determinental processes, mixing processes . . .

Tomorrow: dependency graphs, variants and mod-Gaussian convergence.