
Dual combinatorics of Jack polynomials

Valentin Féray
joint work with Maciej Dołęga (Paris 7)

and Piotr Śniady (TU Munich)

Institut für Mathematik, Universität Zürich

Workshop, Recent Trends in Algebraic and Geometric Combinatorics
Madrid, November 27th - 29th, 2013

V. Féray (with PŚ, MD) (I-Math, UZH)Dual combinatorics of Jack polynomials Madrid, 2013–11 1 / 29



What is this talk about?

Symmetric functions:

x3
1 + x3

2 + x3
3 + . . .

∑

i<j

xixj
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What is this talk about?

Symmetric functions.

in particular Jack polynomials J
(α)
λ .

J
(α)
(2) = (α+ 1) · x2

1 + 2 · x1 · x2 + (α+ 1) · x2
2

+ 2 · x1 · x3 + 2 · x2 · x3 + (α+ 1) · x2
3 + . . .
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What is this talk about?

Symmetric functions.

in particular Jack polynomials J
(α)
λ .

We present a new approach to the study of Jack polynomials (called
dual), due to Michel Lassalle with a lot of open questions.

V. Féray (with PŚ, MD) (I-Math, UZH)Dual combinatorics of Jack polynomials Madrid, 2013–11 2 / 29



What is this talk about?

Symmetric functions.

in particular Jack polynomials J
(α)
λ .

We present a new approach to the study of Jack polynomials (called
dual), due to Michel Lassalle with a lot of open questions.

Partial answers (for α = 1, 2) involve combinatorics and representation
theory.
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Outline of the talk

1 Definitions and notations

2 Dual approach and Lassalle’s conjectures

3 Solution to the α = 1 case using Young symmetrizer

4 Overview of the α = 2 case

5 Leads towards the general case
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Definitions and notations

Partitions

Definition

A partition (of n) is a non-increasing list of integer (of sum n).
If λ is a partition of n, we denote λ ⊢ n

Example : (4, 3, 1) ⊢ 8.

Graphical representation as Young diagram :
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Definitions and notations

Symmetric functions

Definition

A symmetric function is a symmetric polynomial in infinitely many variables
x1, x2, . . . .

i.e.

bounded degree ;

when we set xn+1 = xn+2 = · · · = 0, we have a symmetric polynomial
in x1, . . . , xn.

Examples:
p3 = x3

1 + x3
2 + x3

3 + . . . , e2 =
∑

i<j

xixj

Swaping the indices of two variables does not change the polynomials.
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Definitions and notations

Symmetric functions

Definition

A symmetric function is a symmetric polynomial in infinitely many variables
x1, x2, . . . .

Let λ = (λ1, . . . , λr ) be a partition. Set

mλ(x1, x2, . . . ) = xλ1
1 . . . xλr

r + its images by swaping indices.

Proposition

The family (mλ)λ partition is a linear basis of the symmetric function ring.

called monomial basis.
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Definitions and notations

Symmetric functions

Definition

A symmetric function is a symmetric polynomial in infinitely many variables
x1, x2, . . . .

Set p0 = 1, pk = xk
1 + xk

2 + . . . . power sums

Proposition

The family (pi )i≥1 is an algebraic basis of the symmetric function ring.
In other words, any symmetric function writes uniquely as a linear function
of (

pλ =
∏

i

pλi

)
,

where λ runs over partitions.
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Definitions and notations

Schur functions

Definition (Jacobi, 1841)

Let λ be a partition. Define

sλ(x1, . . . , xn) =
det
(
x
λj+n−j

i

)

det
(
x

n−j
i

) .

Then (sλ) is a linear basis of symmetric function ring.

Example:

s(2,1)(x1, x2, x3) = x2
1 · x2 + x1 · x

2
2 + x2

1 · x3 + 2 · x1 · x2 · x3

+ x2
2 · x3 + x1 · x

2
3 + x2 · x

2
3
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Definitions and notations

Representation theory of symmetric group

Sn : group of permutations of n.

We are interested in its representation that is group morphisms
Sn → GL(V ), V C-vector space of finite dimension.
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Definitions and notations

Representation theory of symmetric group

Sn : group of permutations of n.

We are interested in its representation that is group morphisms
Sn → GL(V ), V C-vector space of finite dimension.

what the general theory says us:
it is enough to study the irreducible representations.

these irreducible representations ρλ are enumerated by the number of
conjugacy classes in Sn, that is of partitions of n.
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Definitions and notations

Representation theory of symmetric group

Sn : group of permutations of n.

We are interested in its representation that is group morphisms
Sn → GL(V ), V C-vector space of finite dimension.

what the general theory says us:
it is enough to study the irreducible representations.

these irreducible representations ρλ are enumerated by the number of
conjugacy classes in Sn, that is of partitions of n.

what is really important is to compute characters (=trace), that is a
collections of numbers

χλ
µ := tr(ρλ(π)) (with π of cycle type µ)

indexed by two partitions.
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Definitions and notations

Frobenius formula

Theorem (Frobenius, 1900)

Let λ be a partition of n, then

sλ =
∑

µ⊢n

χλ
µ

pµ

zµ
,

where zµ =
∏

i≥1 imi mi ! if µ has m1 parts equal to 1,. . .

This result makes a link between two different theories: symmetric
functions and representation theory of the symmetric group.
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Definitions and notations

Frobenius formula

Theorem (Frobenius, 1900)

Let λ be a partition of n, then

sλ =
∑

µ⊢n

χλ
µ

pµ

zµ
,

where zµ =
∏

i≥1 imi mi ! if µ has m1 parts equal to 1,. . .

Hall scalar product is defined by 〈pµ, pν〉 := zµδµ,ν .
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Definitions and notations

Frobenius formula

Theorem (Frobenius, 1900)

Let λ be a partition of n, then

sλ =
∑

µ⊢n

χλ
µ

pµ

zµ
,

where zµ =
∏

i≥1 imi mi ! if µ has m1 parts equal to 1,. . .

Hall scalar product is defined by 〈pµ, pν〉 := zµδµ,ν .

Orthonormality of
irreducible characters

⇒ 〈sλ, sρ〉 = δλ,ρ
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Definitions and notations

Frobenius formula

Theorem (Frobenius, 1900)

Let λ be a partition of n, then

sλ =
∑

µ⊢n

χλ
µ

pµ

zµ
,

where zµ =
∏

i≥1 imi mi ! if µ has m1 parts equal to 1,. . .

Hall scalar product is defined by 〈pµ, pν〉 := zµδµ,ν .

Orthonormality of
irreducible characters

⇒ 〈sλ, sρ〉 = δλ,ρ

Proposition

The basis (sλ) may be obtained from the monomial basis by Gram-Schmidt
orthonormalization process. (use lexicographic order on partitions).
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Definitions and notations

Jack polynomials

Consider the following deformation of Hall scalar product:

〈pµ, pν〉α = αℓ(µ)zµδµ,ν

ℓ(µ): length (number of parts) of the partition µ.

Definition

Jack polynomials PQ
(α)
λ are obtained from the monomial basis by

Gram-Schmidt orthonormalization process (with respect to the deformed
scalar product).
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Definitions and notations

Jack polynomials

Consider the following deformation of Hall scalar product:

〈pµ, pν〉α = αℓ(µ)zµδµ,ν

ℓ(µ): length (number of parts) of the partition µ.

Definition

Jack polynomials PQ
(α)
λ are obtained from the monomial basis by

Gram-Schmidt orthonormalization process (with respect to the deformed
scalar product).

Renormalization: J
(α)
λ = c

(α)
λ PQ

(α)
λ with c

(α)
λ explicit.
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Definitions and notations

Jack polynomials

Consider the following deformation of Hall scalar product:

〈pµ, pν〉α = αℓ(µ)zµδµ,ν

ℓ(µ): length (number of parts) of the partition µ.

Definition

Jack polynomials PQ
(α)
λ are obtained from the monomial basis by

Gram-Schmidt orthonormalization process (with respect to the deformed
scalar product).

Renormalization: J
(α)
λ = c

(α)
λ PQ

(α)
λ with c

(α)
λ explicit.

Specialization: J
(1)
λ = c

(1)
λ sλ = n!

dim(Vλ)
sλ.

Vλ: irreducible representation of Sn associated to λ.
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Definitions and notations

Jack “characters”

Main object in the talk

Let λ and µ be partitions of n. Define θ
λ,(α)
µ by

J
(α)
λ =

∑

µ⊢n

θλ,(α)µ · pµ.
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Definitions and notations

Jack “characters”

Main object in the talk

Let λ and µ be partitions of n. Define θ
λ,(α)
µ by

J
(α)
λ =

∑

µ⊢n

θλ,(α)µ · pµ.

Unfortunately, θλ,(α)µ has no (known) representation-theoretical
interpretation for general α.
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Definitions and notations

Jack “characters”

Main object in the talk

Let λ and µ be partitions of n. Define θ
λ,(α)
µ by

J
(α)
λ =

∑

µ⊢n

θλ,(α)µ · pµ.

Unfortunately, θλ,(α)µ has no (known) representation-theoretical
interpretation for general α.

But, it shares (conjecturally) a lot of properties with

θλ,(1)µ = zµn!
χλ
µ

dim(λ)
,

whence the name Jack characters.
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Dual approach and Lassalle’s conjectures

A function on the set of all Young diagrams

Definition

Let µ be a partition of k without part equal to 1. Define

Ch(α)µ (λ) =

{
zµθ

λ,(α)

µ1n−k if n = |λ| ≥ k ;

0 otherwise.

Ch(α)µ is a function of all Young diagrams.

V. Féray (with PŚ, MD) (I-Math, UZH)Dual combinatorics of Jack polynomials Madrid, 2013–11 11 / 29



Dual approach and Lassalle’s conjectures

A function on the set of all Young diagrams

Definition

Let µ be a partition of k without part equal to 1. Define

Ch(α)µ (λ) =

{
zµθ

λ,(α)

µ1n−k if n = |λ| ≥ k ;

0 otherwise.

Ch(α)µ is a function of all Young diagrams.

Specialization: if |µ| < |λ|,

Ch(1)µ (λ) =
|λ|!

(|λ| − |µ|)!
·
χλ
µ1n−k

dim(Vλ)
.

Introduced by S. Kerov, G. Olshanski in the case α = 1, by M. Lassalle in
the general case.
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Dual approach and Lassalle’s conjectures

A function on the set of all Young diagrams

Definition

Let µ be a partition of k without part equal to 1. Define

Ch(α)µ (λ) =

{
zµθ

λ,(α)

µ1n−k if n = |λ| ≥ k ;

0 otherwise.

Proposition (M. Lassalle)

For any r , the application

(λ1, . . . , λr ) 7→ Ch(α)µ

(
(λ1, . . . , λr )

)

is a polynomial in λ1, . . . , λr . Besides, it is symmetric in λ1 − 1, . . . ,
λr − r .

In other words, Ch(α)µ is a shifted symmetric function.
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Dual approach and Lassalle’s conjectures

Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same size, with q

non-decreasing.
We associate to them the partition

λ(p,q) =
(
q1, . . . , q1︸ ︷︷ ︸

p1 times

, q2, . . . , q2︸ ︷︷ ︸
p2 times

, . . .
)
.

p
1

q1

p
2

q2

p
3

q3

Young diagram of λ(p,q)
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Dual approach and Lassalle’s conjectures

Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same size, with q

non-decreasing.
We associate to them the partition

λ(p,q) =
(
q1, . . . , q1︸ ︷︷ ︸

p1 times

, q2, . . . , q2︸ ︷︷ ︸
p2 times

, . . .
)
.

Conjecture (M. Lassalle)

Let µ be a partition of k . (−1)k Ch(α)µ (λ(p,q)) is a polynomial in

p1, p2, . . . ,−q1,−q2, . . . , α− 1

with non-negative integer coefficients.

polynomiality in p and q: consequence of shifted symmetry
polynomiality in α: F., Dołęga 2012

V. Féray (with PŚ, MD) (I-Math, UZH)Dual combinatorics of Jack polynomials Madrid, 2013–11 12 / 29



Dual approach and Lassalle’s conjectures

Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same size, with q

non-decreasing.
We associate to them the partition

λ(p,q) =
(
q1, . . . , q1︸ ︷︷ ︸

p1 times

, q2, . . . , q2︸ ︷︷ ︸
p2 times

, . . .
)
.

Conjecture (M. Lassalle)

Let µ be a partition of k . (−1)k Ch(α)µ (λ(p,q)) is a polynomial in

p1, p2, . . . ,−q1,−q2, . . . , α− 1

with non-negative integer coefficients.

Hard, interesting still open part: non-negativity (and integrity).
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Case α = 1 and Young symmetrizer

Case α = 1

Goal of the next few slides: sketch the proof of Lassalle’s conjecture in the
case α = 1.

Theorem (F. 2007, conjectured by Stanley 2003)

Let µ be a partition of k . (−1)k Ch(1)µ (λ(p,q)) is a polynomial in

p1, p2, . . . ,−q1,−q2, . . .

with non-negative integer coefficients.

Reminder: if |µ| < |λ|,

Ch(1)µ (λ) =
|λ|!

(|λ| − |µ|)!
·
χλ
µ1n−k

dim(Vλ)
.

Hence, we need to know how to compute χλ
µ1n−k .

Next step: construction of irreducible representations of Sn.
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Case α = 1 and Young symmetrizer

Young’s symmetrizer (1/3)

Let λ be a partition of n.

Choose a filling T0 of λ. Example:

λ = (2, 2), T0 =
2 4
1 3 .
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Case α = 1 and Young symmetrizer

Young’s symmetrizer (1/3)

Let λ be a partition of n.

Choose a filling T0 of λ. Define

aλ =
∑

σ∈Sn
σ∈RS(T0)

σ ∈ C[Sn],

where RS(T0) is the row stabilizer of T0 ;

Example:

λ = (2, 2), T0 =
2 4
1 3 .

aλ = id+(1 3) + (2 4)

+ (1 3)(2 4)

Everything depends on T0, although that is hidden in notations.
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Case α = 1 and Young symmetrizer

Young’s symmetrizer (1/3)

Let λ be a partition of n.

Choose a filling T0 of λ. Define

aλ =
∑

σ∈Sn
σ∈RS(T0)

σ ∈ C[Sn],

where RS(T0) is the row stabilizer of T0 ;

bλ =
∑

τ∈Sn
τ∈CS(T0)∈C[Sn ]

ε(τ)τ

CS(T0) is the column stabilizer of T0.

Example:

λ = (2, 2), T0 =
2 4
1 3 .

aλ = id+(1 3) + (2 4)

+ (1 3)(2 4)

bλ = id−(1 2)− (3 4)

+ (1 2)(3 4)

Everything depends on T0, although that is hidden in notations.
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Case α = 1 and Young symmetrizer

Young symmetrizer (2/3)

Consider
aλ · bλ =

∑

σ∈Sn
σ∈RS(T0)

∑

τ∈Sn
τ∈CS(T0)

ε(τ)στ

Lemma

Then pλ = αλaλ · bλ is a projector (i.e. p2
λ = pλ) for a well-chosen

constant αλ.
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Case α = 1 and Young symmetrizer

Young symmetrizer (3/3)

Reminder: pλ = αλaλ · bλ is a projector.
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Case α = 1 and Young symmetrizer

Young symmetrizer (3/3)

Reminder: pλ = αλaλ · bλ is a projector.

Set Vλ = C[Sn]pλ, subspace of the group algebra.

Then Sn acts by left multiplication on Vλ.
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Case α = 1 and Young symmetrizer

Young symmetrizer (3/3)

Reminder: pλ = αλaλ · bλ is a projector.

Set Vλ = C[Sn]pλ, subspace of the group algebra.

Then Sn acts by left multiplication on Vλ.

Theorem (Young, 1901)

(Vλ)λ⊢n forms a complete set of irreducible representations of Sn.

note: in fact, αλ = dim(Vλ)
n! .
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Case α = 1 and Young symmetrizer

Young symmetrizer (3/3)

Reminder: pλ = αλaλ · bλ is a projector.

Set Vλ = C[Sn]pλ, subspace of the group algebra.

Then Sn acts by left multiplication on Vλ.

Theorem (Young, 1901)

(Vλ)λ⊢n forms a complete set of irreducible representations of Sn.

note: in fact, αλ = dim(Vλ)
n! .

Next step : compute the trace.
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Case α = 1 and Young symmetrizer

Reformulation
Our goal

Let µ be a partition of n and π a permutation of cycle-type µ. We want to
compute the trace χλ

µ of

ρλ(π) :
C[Sn]pλ → C[Sn]pλ

x 7→ π · x
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Case α = 1 and Young symmetrizer

Reformulation
Our goal

Let µ be a partition of n and π a permutation of cycle-type µ. We want to
compute the trace χλ

µ of

ρλ(π) :
C[Sn]pλ → C[Sn]pλ

x 7→ π · x

Problem: C[Sn]pλ does not have an explicit basis
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Case α = 1 and Young symmetrizer

Reformulation
Our goal

Let µ be a partition of n and π a permutation of cycle-type µ. We want to
compute the trace χλ

µ of

ρλ(π) :
C[Sn]pλ → C[Sn]pλ

x 7→ π · x

Problem: C[Sn]pλ does not have an explicit basis

Lemma

tr(ρλ(π)) = tr

(
C[Sn] → C[Sn]

x 7→ π · x · pλ

)

Proof: C[Sn] = C[Sn]pλ ⊕C[Sn](1− pλ)
and the application (x 7→ πxpλ) is ρλ(π) on C[Sn]pλ and 0 on
C[Sn](1− pλ)
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Case α = 1 and Young symmetrizer

Reformulation
Our goal

Let µ be a partition of n and π a permutation of cycle-type µ. We want to
compute the trace χλ

µ of

ρλ(π) :
C[Sn]pλ → C[Sn]pλ

x 7→ π · x

Problem: C[Sn]pλ does not have an explicit basis

Lemma

tr(ρλ(π)) = tr

(
C[Sn] → C[Sn]

x 7→ π · x · pλ

)

Corollary

χλ
µ = tr(ρλ(π)) = αλ

∑

σ∈Sn
σ∈RS(T0)

∑

τ∈Sn
τ∈CS(T0)

ε(τ) tr(x 7→ π · x · σ · τ)
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Case α = 1 and Young symmetrizer

Reformulation
Our goal

Let µ be a partition of n and π a permutation of cycle-type µ. We want to
compute the trace χλ

µ of

ρλ(π) :
C[Sn]pλ → C[Sn]pλ

x 7→ π · x

Problem: C[Sn]pλ does not have an explicit basis

Lemma

tr(ρλ(π)) = tr

(
C[Sn] → C[Sn]

x 7→ π · x · pλ

)

Corollary

χλ
µ = tr(ρλ(π)) = αλ

∑

σ∈Sn
σ∈RS(T0)

∑

τ∈Sn
τ∈CS(T0)

ε(τ)
∑

g∈Sn

δπ·g ·σ·τ, g
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Case α = 1 and Young symmetrizer

First formula

n!
tr(ρλ(π))
dim(Vλ)

=
∑

σ∈Sn
σ∈RS(T0)

∑

τ∈Sn
τ∈CS(T0)

ε(τ)
∑

g∈Sn

δπgστ=g
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Case α = 1 and Young symmetrizer

First formula

n!
tr(ρλ(π))
dim(Vλ)

=
∑

σ∈Sn
σ∈RS(T0)

∑

τ∈Sn
τ∈CS(T0)

ε(τ)
∑

g∈Sn

δπgστ=g

. . . (some combinatorial manipulations on sums) . . .

n!
χλ
µ

dim(Vλ)
=
∑

σ,τ∈Sn
στ=π

ε(τ)Fσ,τ (λ),

where

Fσ,τ (λ) =

∣∣∣∣
{

fillings T of λ
such that σ ∈ RS(T ), τ ∈ CS(T )

}∣∣∣∣

Example for σ = (1, 2) ∈ S6, τ = (1, 3) ∈ S6: filling T =
5
2 1
4 3 6
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Case α = 1 and Young symmetrizer

Further simplifications

Reminder: n!
χλ
µ

dim(Vλ)
=
∑

σ,τ∈Sn
στ=π

ε(τ)Fσ,τ (λ).

We are interested in χλ
µ1n−k ⇒ we can choose π ∈ Sk ⊂ Sn.
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Case α = 1 and Young symmetrizer

Further simplifications

Reminder: n!
χλ
µ

dim(Vλ)
=
∑

σ,τ∈Sn
στ=π

ε(τ)Fσ,τ (λ).

We are interested in χλ
µ1n−k ⇒ we can choose π ∈ Sk ⊂ Sn.

Observation:
terms vanish except for σ, τ also in Sk ;
for σ, τ in Sk ,

Fσ,τ (λ) = (n − k)!Ñσ,τ (λ),

where Ñσ,τ (λ) =

∣∣∣∣
{

injective functions f : {1, · · · , k} → λ
such that σ ∈ RS(f ), τ ∈ CS(f )

}∣∣∣∣

Example for σ = (1, 2) ∈ S3, τ = (1, 3) ∈ S3: filling T = 2 1
3
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Case α = 1 and Young symmetrizer

Further simplifications

Reminder: n!
χλ
µ

dim(Vλ)
=
∑

σ,τ∈Sn
στ=π

ε(τ)Fσ,τ (λ).

We are interested in χλ
µ1n−k ⇒ we can choose π ∈ Sk ⊂ Sn.

Observation:
terms vanish except for σ, τ also in Sk ;
for σ, τ in Sk ,

Fσ,τ (λ) = (n − k)!Ñσ,τ (λ),

where Ñσ,τ (λ) =

∣∣∣∣
{

injective functions f : {1, · · · , k} → λ
such that σ ∈ RS(f ), τ ∈ CS(f )

}∣∣∣∣

We obtain:
n!

(n − k)!

χλ
µ1n−k

dim(Vλ)
=
∑

σ,τ∈Sk
στ=π

ε(τ)Ñσ,τ (λ),
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ε(τ)Fσ,τ (λ).
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n!
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χλ
µ1n−k

dim(Vλ)
=
∑
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στ=π

ε(τ)Ñσ,τ (λ),
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Case α = 1 and Young symmetrizer

Further simplifications

Reminder: n!
χλ
µ

dim(Vλ)
=
∑

σ,τ∈Sn
στ=π

ε(τ)Fσ,τ (λ).

We are interested in χλ
µ1n−k ⇒ we can choose π ∈ Sk ⊂ Sn.

We have obtained:

n!

(n − k)!

χλ
µ1n−k

dim(Vλ)
=
∑

σ,τ∈Sk
στ=π

ε(τ)Nσ,τ (λ),

where Nσ,τ (λ) =

∣∣∣∣
{

functions f : {1, · · · , k} → λ
such that σ ∈ RS(f ), τ ∈ CS(f )

}∣∣∣∣

One can forget injectivity condition : non-injective functions have a total
0-contribution.
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Case α = 1 and Young symmetrizer

End of our proof

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

n!

(n − k)!

χλ
µ1n−k

dim(Vλ)
=
∑

σ,τ∈Sk
στ=π

ε(τ)Nσ,τ (λ)

Proof: the few previous slides!
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Case α = 1 and Young symmetrizer

End of our proof

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

Ch(1)µ (λ) =
∑

σ,τ∈Sk
στ=π

ε(τ)Nσ,τ (λ)

Proof: the few previous slides!
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Case α = 1 and Young symmetrizer

End of our proof

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

(−1)k Ch(1)µ (λ) =
∑

σ,τ∈Sk
στ=π

(−1)|C(τ)|Nσ,τ (λ)

|C (τ)|: nombre de cycle de τ .
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Case α = 1 and Young symmetrizer

End of our proof

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

(−1)k Ch(1)µ (λ) =
∑

σ,τ∈Sk
στ=π

(−1)|C(τ)|Nσ,τ (λ)

|C (τ)|: nombre de cycle de τ .

Lemma

Let σ, τ in Sk . Then Nσ,τ

(
λ(p,q)

)
is a polynomial in p and q with

non-negative integer coefficients and degree |C (σ)| in p and |C (τ)| in q.
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Case α = 1 and Young symmetrizer

End of our proof

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

(−1)k Ch(1)µ (λ) =
∑

σ,τ∈Sk
στ=π

(−1)|C(τ)|Nσ,τ (λ)

|C (τ)|: nombre de cycle de τ .

Lemma

Let σ, τ in Sk . Then Nσ,τ

(
λ(p,q)

)
is a polynomial in p and q with

non-negative integer coefficients and degree |C (σ)| in p and |C (τ)| in q.

Corollary

(−1)k Ch(1)µ

(
λ(p,q)

)
is a polynomial in p and −q with non-negative

integer coefficients.
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Case α = 1 and Young symmetrizer

An example of Nσ,τ

(
λ(p,q)

)

Let σ = (1 2) and τ = id2.
Nσ,τ (λ) count the number of ordered choice of two boxes of λ in the same
row.
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Case α = 1 and Young symmetrizer

An example of Nσ,τ

(
λ(p,q)

)

Let σ = (1 2) and τ = id2.
Nσ,τ (λ) count the number of ordered choice of two boxes of λ in the same
row.

Recall that λ(p,q) =

p
1

q1

p
2

q2

p
3

q3

.
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Case α = 1 and Young symmetrizer

An example of Nσ,τ

(
λ(p,q)

)

Let σ = (1 2) and τ = id2.
Nσ,τ (λ) count the number of ordered choice of two boxes of λ in the same
row.

Recall that λ(p,q) =

p
1

q1

p
2

q2

p
3

q3

.

Hence
N(1 2),id2

(
λ(p,q)

)
=
∑

i≥1

piq
2
i .
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Case α = 1 and Young symmetrizer

End of our proof (reminder)

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

(−1)k Ch(1)µ (λ) =
∑

σ,τ∈Sk
στ=π

(−1)|C(τ)|Nσ,τ (λ)

Lemma

Let σ, τ in Sk . Then Nσ,τ

(
λ(p,q)

)
is a polynomial in p and q with

non-negative integer coefficients and degree |C (σ)| in p and |C (τ)| in q.

Corollary

(−1)k Ch(1)µ

(
λ(p,q)

)
is a polynomial in p and −q with non-negative

integer coefficients.
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Case α = 1 and Young symmetrizer

Pair of permutations and graphs embedded in surfaces

There is a (classical) bijection between

Sk × Sk ⇐⇒





bicolored graphs
embedded in orientable surfaces

with k labelled edges.





(
up to isomorphism

with a slight technical condition

)
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Case α = 1 and Young symmetrizer

Pair of permutations and graphs embedded in surfaces

There is a (classical) bijection between

Sk × Sk ⇐⇒

{
bicolored oriented maps
with k labelled edges.

}
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Case α = 1 and Young symmetrizer

Pair of permutations and graphs embedded in surfaces

There is a (classical) bijection between

Sk × Sk ⇐⇒

{
bicolored oriented maps
with k labelled edges.

}

3

4

4
5 51

2
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Case α = 1 and Young symmetrizer

Pair of permutations and graphs embedded in surfaces

There is a (classical) bijection between

Sk × Sk ⇐⇒

{
bicolored oriented maps
with k labelled edges.

}

σ = (1 5 2)(3 4)
τ = (1 2 3 5 4)

←→ 3

4

4
5 51

2
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Case α = 1 and Young symmetrizer

Pair of permutations and graphs embedded in surfaces

There is a (classical) bijection between

Sk × Sk ⇐⇒

{
bicolored oriented maps
with k labelled edges.

}

σ = (1 5 2)(3 4)
τ = (1 2 3 5 4)

←→ 3

4

4
5 51

2

cycles of the product ↔ “faces” of the map;

Nσ,τ depends only on the underlying graph (neither on the embedding
nor on edge multiplicities).
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Case α = 1 and Young symmetrizer

Stanley’s formula in terms of map

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

(−1)k Ch(1)µ (λ) =
∑

M bipartite oriented map
of face-type µ

(−1)|V•(M)|NG(M)(λ)
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Case α = 1 and Young symmetrizer

Stanley’s formula in terms of map

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

(−1)k Ch(1)µ (λ) =
∑

M bipartite oriented map
of face-type µ

(−1)|V•(M)|NG(M)(λ)

It is classical to count maps via characters of the symmetric group using
Frobenius counting formula (Stanley, Jackson, Vinsenti, Jones, Zagier,
Goupil, Schaeffer, Poulhalon).

But both formulas do not seem to be linked!
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Transition

Transition

We just proved Lassalle’s conjecture for α = 1.
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Transition

Transition

We just proved Lassalle’s conjecture for α = 1.

Theorem (F. Śniady, 2011)

Lassalle’s conjecture holds also for α = 2.

Next two slides:

representation-theoretical interpretation of θλ,(2)µ (involves Gelfand
pair) ;

combinatorial formula for Ch(2)µ .
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Case α = 2 and Hecke algebra of (S2n ,Bn)

Definition of Gelfand pairs

Let G be a finite group and K a subgroup of G . We say that (G ,K ) is a
Gelfand pair if

The induced representation 1G
K is multiplicity free;

or equivalently, the C[K\G/K ] is commutative

C[K\G/K ]: subalgebra of C[G ] formed by elements invariants by left and
right multiplication by k ∈ K
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Case α = 2 and Hecke algebra of (S2n ,Bn)

Definition of Gelfand pairs

Let G be a finite group and K a subgroup of G . We say that (G ,K ) is a
Gelfand pair if

The induced representation 1G
K is multiplicity free;

or equivalently, the C[K\G/K ] is commutative

Theory of Gelfand pairs extends representation theory of finite groups
(RTFG).

RTFG Gelfand pairs
Z (C[G ]) C[K\G/K ]

representations ?
normalized irreducible

character values
zonal sperical

functions
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Case α = 2 and Hecke algebra of (S2n ,Bn)

Definition of Gelfand pairs

Let G be a finite group and K a subgroup of G . We say that (G ,K ) is a
Gelfand pair if

The induced representation 1G
K is multiplicity free;

or equivalently, the C[K\G/K ] is commutative

Theory of Gelfand pairs extends representation theory of finite groups
(RTFG).

RTFG Gelfand pairs
Z (C[G ]) C[K\G/K ]

representations ?
normalized irreducible

character values
zonal sperical

functions

Theorem (Stembridge, 1992)

θ
λ,(2)
µ are the zonal spherical values of the Gelfand pair (S2n,Hn) (Hn is the

hyperoctahedral group).
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Case α = 2 and Hecke algebra of (S2n ,Bn)

Combinatorial formula for Ch(2)µ

Theorem (F., Śniady 2011)

(−1)k2ℓ(µ) Ch(2)µ (λ) =
∑

M bipartite non-oriented maps
of face-type µ

(−2)|V•(M)|NG(M)(λ)

V. Féray (with PŚ, MD) (I-Math, UZH)Dual combinatorics of Jack polynomials Madrid, 2013–11 27 / 29



Case α = 2 and Hecke algebra of (S2n ,Bn)

Combinatorial formula for Ch(2)µ

Theorem (F., Śniady 2011)

(−1)k2ℓ(µ) Ch(2)µ (λ) =
∑

M bipartite non-oriented maps
of face-type µ

(−2)|V•(M)|NG(M)(λ)

Implies Lassalle’s conjecture for α = 2.
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Case α = 2 and Hecke algebra of (S2n ,Bn)

Combinatorial formula for Ch(2)µ

Theorem (F., Śniady 2011)

(−1)k2ℓ(µ) Ch(2)µ (λ) =
∑

M bipartite non-oriented maps
of face-type µ

(−2)|V•(M)|NG(M)(λ)

Implies Lassalle’s conjecture for α = 2.

There is a formula, analog to Frobenius counting formula, counting
non-oriented maps using zonal spherical functions of (S2n,Hn) (Goulden,
Jackson, 1996). But, once again, it does not seem related to our formula!
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Leads towards the general case

A combinatorial solution to the general case ?

Conjecture (hope ?)

There exists a weight wM(α− 1), polynomial with non-negative coefficients
in α− 1, such that

(−1)k Ch(α)µ (λ) =
∑

M bipartite non-oriented map
of face-type µ

wM(α− 1)NG(M)(λ)
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Leads towards the general case

A combinatorial solution to the general case ?

Conjecture (hope ?)

There exists a weight wM(α− 1), polynomial with non-negative coefficients
in α− 1, such that

(−1)k Ch(α)µ (λ) =
∑

M bipartite non-oriented map
of face-type µ

wM(α− 1)NG(M)(λ)

Goulden and Jackson (1996) have a similar conjecture for an extension of
Frobenius counting formula. But still open!
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Leads towards the general case

A combinatorial solution to the general case ?

Conjecture (hope ?)

There exists a weight wM(α− 1), polynomial with non-negative coefficients
in α− 1, such that

(−1)k Ch(α)µ (λ) =
∑

M bipartite non-oriented map
of face-type µ

wM(α− 1)NG(M)(λ)

A partial result (Dołęga, F., Śniady, 2013)

There exist a combinatorial weight wM(α− 1) such that, for any
rectangular Young diagrams, the formula above holds.
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Leads towards the general case

A combinatorial solution to the general case ?

Conjecture (hope ?)

There exists a weight wM(α− 1), polynomial with non-negative coefficients
in α− 1, such that

(−1)k Ch(α)µ (λ) =
∑

M bipartite non-oriented map
of face-type µ

wM(α− 1)NG(M)(λ)

A partial result (Dołęga, F., Śniady, 2013)

There exist a combinatorial weight wM(α− 1) such that, for any
rectangular Young diagrams, the formula above holds.

But this specific weight does not work in general (fails for µ = (9) and λ
non trivial superposition of 3 rectangles).
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Leads towards the general case

Conclusion and perspectives

Still some weights to test. . .
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Leads towards the general case

Conclusion and perspectives

Still some weights to test. . .

Cases α = 1 and 2 can be proved a posteriori without representation
theory. So, if we guess the general combinatorial formula, there is
some chance that we may prove it.
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some chance that we may prove it.

But, of course, what would be really nice is a representation-theoretic
interpretation for general α. Perhaps solving Lassalle’s conjecture
would help.
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some chance that we may prove it.

But, of course, what would be really nice is a representation-theoretic
interpretation for general α. Perhaps solving Lassalle’s conjecture
would help.

In any case, Jack polynomials are well-studied objects and a new
combinatorial description would be welcome.
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Leads towards the general case

Conclusion and perspectives

Still some weights to test. . .

Cases α = 1 and 2 can be proved a posteriori without representation
theory. So, if we guess the general combinatorial formula, there is
some chance that we may prove it.

But, of course, what would be really nice is a representation-theoretic
interpretation for general α. Perhaps solving Lassalle’s conjecture
would help.

In any case, Jack polynomials are well-studied objects and a new
combinatorial description would be welcome.

from a combinatorial point of view, the conjecture suggest an
interpolation between oriented and non-oriented framework: puzzling!
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