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What is this talk about?

Ring of symmetric functions and its classical bases:
monomial symmetric functions, power sums, Schur functions.
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What is this talk about?

Ring of symmetric functions and its classical bases:
monomial symmetric functions, power sums, Schur functions.

Another basis:
zonal polynomials, analogue of Schur functions.

Main result:
a simple combinatorial formula for zonal polynomials in terms of
power-sums.
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Schur functions

Partitions

Definition

An integer partition λ of n (denoted λ ⊢ n) is a non-increasing sequence of
non-negative integers of sum n.

Example: λ = (2, 2, 1) ⊢ 5.
length ℓ(λ): number of non-zeros entries.

Two different orders on partitions of n:

lexicographic order ≤lex ;

dominance order:

λ ≤dom µ ⇔ ∀ i , λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi .

Note: ≤lex is a total order refining ≤dom.
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Schur functions

Symmetric functions

Λ: ring of symmetric functions.

Augmented monomial symmetric functions:

M̃λ =
∑

i1,...,ir
pairwise distinct

xλ1
i1

. . . xλr

ir
.

Example: for j ≥ k ,
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Power sums: for k ≥ 1, set

pk(x1, . . . , xn) = xk
1 + xk

2 + · · ·+ xk
n .

It is an algebraic basis, i.e. pµ =
∏

i pµi
is a linear basis.
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Power sums: for k ≥ 1, set

pk(x1, . . . , xn) = xk
1 + xk

2 + · · ·+ xk
n .

It is an algebraic basis, i.e. pµ =
∏

i pµi
is a linear basis.

Hall scalar product:
〈pµ, pν〉 := δµ,νzµ,

where zµ =
∏

i i
mi (µ)mi(µ)!.
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Schur functions

Schur functions

Another linear basis: (hλsλ) defined by

Remarks:

Schur functions have several other equivalent descriptions.

hλ = n!
dim(Vλ)

.
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Schur functions

Schur functions

Another linear basis: (hλsλ) defined by

orthogonality 〈sλ, sµ〉 = 0 whenever λ 6= µ

triangularity If sλ =
∑

µ cλµM̃µ, then cλµ = 0 for µ �dom λ.

normalization [p1n ]hλsλ = 1.

Unicity: Gram-Schmidt orthogonalization process with ≤lex.

Remarks:

Schur functions have several other equivalent descriptions.

hλ = n!
dim(Vλ)

.
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Schur functions

Young symmetrizer formula

Fix a filling T of the Young diagram λ.

Example : λ = 31, T =
1 2 3
4 .
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Schur functions

Young symmetrizer formula

Fix a filling T of the Young diagram λ.

Example : λ = 31, T =
1 2 3
4 .

hλsλ =
∑

σ

∑

τ

,

where σ (resp. τ) is a permutation preserving the rows (resp. columns) of
T .

τ\σ Id (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
Id

(1 4)
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Schur functions

Young symmetrizer formula

Fix a filling T of the Young diagram λ.

Example : λ = 31, T =
1 2 3
4 .

hλsλ =
∑

σ

∑

τ

ε(τ )pcycle-type(στ−1),

where σ (resp. τ) is a permutation preserving the rows (resp. columns) of
T .
Table of στ−1 :

τ\σ Id (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
Id , ε = 1 Id (1 2) (1 3) (2 3) (1 2 3) (1 3 2)

(1 4), ε = −1 (1 4) (1 4 2) (1 4 3) (1 4)(2 3) (1 4 2 3) (1 4 3 2)
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Schur functions

Young symmetrizer formula

Fix a filling T of the Young diagram λ.

Example : λ = 31, T =
1 2 3
4 .

hλsλ =
∑

σ

∑

τ

ε(τ )pcycle-type(στ−1),

where σ (resp. τ) is a permutation preserving the rows (resp. columns) of
T .
Table of pcycle-type(στ−1):

τ\σ Id (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
Id , ε = 1 p14 p211 p211 p211 p31 p31

(1 4), ε = −1 p211 p31 p31 p22 p4 p4
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Schur functions

Young symmetrizer formula

Fix a filling T of the Young diagram λ.

Example : λ = 31, T =
1 2 3
4 .

hλsλ =
∑

σ

∑

τ

ε(τ )pcycle-type(στ−1),

where σ (resp. τ) is a permutation preserving the rows (resp. columns) of
T .
Table of pcycle-type(στ−1):

τ\σ Id (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
Id , ε = 1 p14 p211 p211 p211 p31 p31

(1 4), ε = −1 p211 p31 p31 p22 p4 p4

Finally,
h31s31 = p14 + 2p211 − p22 − 2p4

V. Féray and P. Śniady () Dual combinatorics of zonal polynomials FPSAC 2011, Reykjavik 6 / 14



Jack polynomials

Definition of Jack polynomials

Deformed scalar product:

〈pµ, pν〉α = δµ,νzµα
ℓ(µ).

J
(α)
λ : one-parameter deformation of (hλsλ) defined by

orthogonality 〈J
(α)
λ , J

(α)
µ 〉α = 0 whenever λ 6= µ.

triangularity If J
(α)
λ =

∑
µ cλµM̃µ, then cλµ = 0 for µ �dom λ.

normalization [p1n ]J
(α)
λ = 1.

Rk: J
(1)
λ = hλsλ.

α = 2: zonal polynomials (they have a representation-theoretical meaning)
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Jack polynomials

An extension of Young symmetrizer formula?

Problem (Hanlon, 1988)

Find an α deformation of Young symmetrizer formula.
More precisely, find a statistics f (σ, τ) such that

J
(α)
λ =

∑

σ

∑

τ

ε(τ )αf (σ,τ)pcycle-type(στ−1)
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It seems very hard!
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Jack polynomials

An extension of Young symmetrizer formula?

Problem (Hanlon, 1988)

Find an α deformation of Young symmetrizer formula.
More precisely, find a statistics f (σ, τ) such that

J
(α)
λ =

∑

σ

∑

τ

ε(τ )αf (σ,τ)pcycle-type(στ−1)

It seems very hard!

Our result: for α = 2, it is easier to change the sum index and consider
pairings instead of permutations!
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Pairings and zonal polynomials

Pairings

Definition

A pairing of [2n] = {1, 2, . . . , 2n} is a partition of the set [2n] into pairs.

Example: S0 =
{
{1, 2}, {3, 4}, . . . , {2n − 1, 2n}

}
.

Short notation: 12|34| . . . .
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A pairing of [2n] = {1, 2, . . . , 2n} is a partition of the set [2n] into pairs.

Example: S0 =
{
{1, 2}, {3, 4}, . . . , {2n − 1, 2n}

}
.

Short notation: 12|34| . . . .

Type of a couple of pairings (analogue of cycle-type(στ−1)):
We consider

S1 = 13|24|56;
S2 = 12|34|56.

We associate the graph

. . .

. . .

1

2

3

4

5

6

.
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We consider

S1 = 13|24|56;
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We associate the graph

. . .

. . .

1
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.

Then type(S1,S2) is by definition the semi-lengths of the cycles in
non-increasing order. Here, type(S1,S2) = (2, 1).
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Pairings

Definition

A pairing of [2n] = {1, 2, . . . , 2n} is a partition of the set [2n] into pairs.

Example: S0 =
{
{1, 2}, {3, 4}, . . . , {2n − 1, 2n}

}
.

Short notation: 12|34| . . . .

Type of a couple of pairings (analogue of cycle-type(στ−1)):
We consider

S1 = 13|24|56;
S2 = 12|34|56.

We associate the graph

. . .

. . .

1

2

3

4

5

6

.

Then type(S1,S2) is by definition the semi-lengths of the cycles in
non-increasing order. Here, type(S1,S2) = (2, 1).

Sign: ε(S1,S2) := (−1)n−#cycles.
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Pairings and zonal polynomials

The main theorem

Fix a filling T of the Young diagram 2λ.

Example : λ = 21, T =
1 2 3 4
5 6 , S(T ) = 12|34|56.
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Pairings and zonal polynomials

The main theorem

Fix a filling T of the Young diagram 2λ.

Example : λ = 21, T =
1 2 3 4
5 6 , S(T ) = 12|34|56.

J
(2)
λ =

∑

S1

∑

S2

,

S1 is a pairing preserving the rows of T .
S2 is a pairing associating elements of the 2i + 1-th column of T with
elements of the 2i + 2-th column.

S2\S1 12|34|56 13|24|56 14|23|56
12|34|56,

16|25|34,
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Pairings and zonal polynomials

The main theorem

Fix a filling T of the Young diagram 2λ.

Example : λ = 21, T =
1 2 3 4
5 6 , S(T ) = 12|34|56.

J
(2)
λ =

∑

S1

∑

S2

ε(S(T ),S2)ptype(S1,S2),

S1 is a pairing preserving the rows of T .
S2 is a pairing associating elements of the 2i + 1-th column of T with
elements of the 2i + 2-th column.

Table of ptype(S1,S2):

S2\S1 12|34|56 13|24|56 14|23|56
12|34|56, ε = 1 p13 p21 p21

16|25|34, ε = −1 p21 p3 p3
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Pairings and zonal polynomials

The main theorem

Fix a filling T of the Young diagram 2λ.

Example : λ = 21, T =
1 2 3 4
5 6 , S(T ) = 12|34|56.

J
(2)
λ =

∑

S1

∑

S2

ε(S(T ),S2)ptype(S1,S2),

S1 is a pairing preserving the rows of T .
S2 is a pairing associating elements of the 2i + 1-th column of T with
elements of the 2i + 2-th column.

Table of ptype(S1,S2):

S2\S1 12|34|56 13|24|56 14|23|56
12|34|56, ε = 1 p13 p21 p21

16|25|34, ε = −1 p21 p3 p3

Finally,
J
(2)
21 = p13 + p21 − 2p3
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Sketch of proof

Outline of the proof

Set Yλ =
∑

S1

∑

S2

ε(S(T ),S2)ptype(S1,S2). One has to prove

1 Triangularity : if Yλ =
∑

µ cλµM̃µ, then cλµ = 0 whenever µ �lex λ.
2 Orthogonality : 〈Yλ,Yµ〉 = 0 if λ 6= µ.
3 Normalization : [p1n ]Yλ = 1.
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1 Triangularity : if Yλ =
∑

µ cλµM̃µ, then cλµ = 0 whenever µ �lex λ.
2 Orthogonality : 〈Yλ,Yµ〉 = 0 if λ 6= µ.
3 Normalization : [p1n ]Yλ = 1.

3 is easy: type(S1,S2) = 1n ⇔ S1 = S2 = S(T ).
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Outline of the proof

Set Yλ =
∑

S1

∑

S2

ε(S(T ),S2)ptype(S1,S2). One has to prove

1 Triangularity : if Yλ =
∑

µ cλµM̃µ, then cλµ = 0 whenever µ �lex λ.
2 Orthogonality : 〈Yλ,Yµ〉 = 0 if λ 6= µ.
3 Normalization : [p1n ]Yλ = 1.

3 is easy: type(S1,S2) = 1n ⇔ S1 = S2 = S(T ).

1 and 2 are harder. The proof relies on sign-reversing involution principle.
We will explain it for 1.
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Sketch of proof

Outline of the proof

Set Yλ =
∑

S1

∑

S2

ε(S(T ),S2)ptype(S1,S2). One has to prove

1 Triangularity : if Yλ =
∑

µ cλµM̃µ, then cλµ = 0 whenever µ �lex λ.
2 Orthogonality : 〈Yλ,Yµ〉 = 0 if λ 6= µ.
3 Normalization : [p1n ]Yλ = 1.

3 is easy: type(S1,S2) = 1n ⇔ S1 = S2 = S(T ).

1 and 2 are harder. The proof relies on sign-reversing involution principle.
We will explain it for 1.

Rk: our original proof used representation theory.
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Sketch of proof

Proof of triangularity (1/2)

2 pairings 7→ graph 7→ set-partition 7→ partition
S1 = 13|24|56.
S2 = 12|34|56;

7→
. . .

. . .

1

2

3

4

5

6

7→
ΠS1,S2 =
1234|56

type
7→ (2, 1)

Recall that Yλ =
∑

S1

∑

S2

ε(S(T ),S2)ptype(ΠS1,S2 )
.
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2 pairings 7→ graph 7→ set-partition 7→ partition
S1 = 13|24|56.
S2 = 12|34|56;
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. . .

. . .
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3
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7→
ΠS1,S2 =
1234|56

type
7→ (2, 1)

Recall that Yλ =
∑

S1

∑

S2

ε(S(T ),S2)ptype(ΠS1,S2 )
.

In terms of M̃,

Yλ =
∑

S1

∑

S2

ε(S(T ),S2)




∑

ΠS1,S2
finer

than Π

M̃type(Π)



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Sketch of proof

Proof of triangularity (1/2)

2 pairings 7→ graph 7→ set-partition 7→ partition
S1 = 13|24|56.
S2 = 12|34|56;
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ε(S(T ),S2)ptype(ΠS1,S2 )
.

In terms of M̃,

Yλ =
∑

S1

∑

S2

ε(S(T ),S2)




∑

ΠS1,S2
finer

than Π

M̃type(Π)




=
∑

Π even
set-partition

M̃type(Π)




∑

S1,S2
ΠS1,S2

≤Π

ε(S(T ),S2)




V. Féray and P. Śniady () Dual combinatorics of zonal polynomials FPSAC 2011, Reykjavik 12 / 14



Sketch of proof

Proof of triangularity (2/2)

Recall Yλ =
∑

Π

M̃type(Π)




∑

S1,S2
ΠS1,S2

≤Π

ε(S(T ),S2)


 .

We want to show that (. . . ) = 0 whenever type(Π) �lex λ.
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Sketch of proof

Proof of triangularity (2/2)

Recall Yλ =
∑
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M̃type(Π)




∑
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
 .

We want to show that (. . . ) = 0 whenever type(Π) �dom λ.
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Sketch of proof

Proof of triangularity (2/2)

Recall Yλ =
∑

Π

M̃type(Π)




∑

S1,S2
ΠS1,S2

≤Π

ε(S(T ),S2)


 .

We want to show that (. . . ) = 0 whenever type(Π) �dom λ.
Idea. Find i and j (depending on Π but not on S1,S2!) such that,
for any S1 and S2:

ε(S(T ),S2) + ε(S(T ),S
(i ,j)
2 ) = 0;

ΠS1,S2 ≤ Π ⇔ Π
S1,S

(i,j)
2

≤ Π;

S2 fulfills the column condition ⇔ S
(i ,j)
2 fulfills the column condition,

where S
(i ,j)
2 is obtained from S2 by exchanging i and j .
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Sketch of proof

Proof of triangularity (2/2)

Recall Yλ =
∑

Π

M̃type(Π)




∑

S1,S2
ΠS1,S2

≤Π

ε(S(T ),S2)


 .

We want to show that (. . . ) = 0 whenever type(Π) �dom λ.
Idea. Find i and j (depending on Π but not on S1,S2!) such that,
for any S1 and S2:

ε(S(T ),S2) + ε(S(T ),S
(i ,j)
2 ) = 0;

ΠS1,S2 ≤ Π ⇔ Π
S1,S

(i,j)
2

≤ Π;

S2 fulfills the column condition ⇔ S
(i ,j)
2 fulfills the column condition.

Fact. it is enough to choose i and j such that:
i and j are in the same part of Π;
i and j are in the same column of T .
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Sketch of proof

Proof of triangularity (2/2)

Recall Yλ =
∑

Π

M̃type(Π)




∑

S1,S2
ΠS1,S2

≤Π

ε(S(T ),S2)


 .

We want to show that (. . . ) = 0 whenever type(Π) �dom λ.
Idea. Find i and j (depending on Π but not on S1,S2!) such that,
for any S1 and S2:

ε(S(T ),S2) + ε(S(T ),S
(i ,j)
2 ) = 0;

ΠS1,S2 ≤ Π ⇔ Π
S1,S

(i,j)
2

≤ Π;

S2 fulfills the column condition ⇔ S
(i ,j)
2 fulfills the column condition.

Fact. it is enough to choose i and j such that:
i and j are in the same part of Π;
i and j are in the same column of T .

Lemma: They always exist if type(Π) �dom λ.
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Why is this formula useful?

Conclusion

Let µ ⊢ k and λ ⊢ n with k ≤ n.

With this formula, one can write

[pµ1n−k ]J
(2)
λ

as a sum whose index set depends on k and not on n.
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as a sum whose index set depends on k and not on n.

In particular, we can prove some recent conjectures of M. Lassalle on
[pµ1n−k ]J

(α)
λ in the case α = 2.
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Conclusion

Let µ ⊢ k and λ ⊢ n with k ≤ n.

With this formula, one can write

[pµ1n−k ]J
(2)
λ

as a sum whose index set depends on k and not on n.

In particular, we can prove some recent conjectures of M. Lassalle on
[pµ1n−k ]J

(α)
λ in the case α = 2.

Still work to do: is there an extension for general α?

Thanks for listening!

V. Féray and P. Śniady () Dual combinatorics of zonal polynomials FPSAC 2011, Reykjavik 14 / 14


	Schur functions
	Jack polynomials
	Pairings and zonal polynomials
	Sketch of proof
	Why is this formula useful?

