Dual combinatorics of zonal polynomials J

Valentin Féray (LaBRI, CNRS, Bordeaux)
Piotr Sniady (University of Wroclaw)

23rd Conference on Formal Power Series and Algebraic Combinatorics
Reykjavik (lceland), Friday, June 17th, 2011.

@ Ll

V. Féray and P. Sniady () Dual combinatorics of zonal polynomials FPSAC 2011, Reykjavik 1/ 14



]
What is this talk about?

@ Ring of symmetric functions and its classical bases:
monomial symmetric functions, power sums, Schur functions.
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]
What is this talk about?

@ Ring of symmetric functions and its classical bases:
monomial symmetric functions, power sums, Schur functions.

@ Another basis:
zonal polynomials, analogue of Schur functions.

@ Main result:
a simple combinatorial formula for zonal polynomials in terms of
power-sums.
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Partitions

Definition
An integer partition A of n (denoted A F n) is a non-increasing sequence of
non-negative integers of sum n.

Example: A =(2,2,1) - 5.
length ¢(\): number of non-zeros entries.

Two different orders on partitions of n:
@ lexicographic order <o ;

@ dominance order:
)\Sdom,u<:> v”)\1++)\l§ﬂ1++ﬂ,

Note: <o, is a total order refining <gom-
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Schur functions

Symmetric functions

A: ring of symmetric functions.

Augmented monomial symmetric functions:

_ A1 Ar
M, = g XX

iteemir
pairwise distinct

Example: for j > k, _ _ _ _
I\/I(J K (X1, %2,x3) = x’x2 + x’x3 xhxf + xbxk —|—x§xk —|—x§x2k.
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Schur functions

Symmetric functions

A: ring of symmetric functions.

Augmented monomial symmetric functions:

_ A1 Ar
M, = g XX

iteemir
pairwise distinct

Example: for j > k, _ _ _ _
I\/I(J k)(X1,X2,X3) = x’x2 +x’x3 xéx{‘ —|—x£x:.f —|—x§x{‘ —|—x§x2k.
Power sums: for k > 1, set
Pr(XL, s Xn) = XF 4 x5+ -4 xK.

It is an algebraic basis, i.e. p, = []; p; is a linear basis.
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Schur functions

Symmetric functions

A: ring of symmetric functions.

Augmented monomial symmetric functions:

_ A1 Ar
M, = g XX

iteemir
pairwise distinct

Example: for j > k,
I\/I(J k) (X1, %2, x3) —xsz +x’x3 —i—x’x1 —|—x’x3 —|—x’x1 —|—x’x2

Power sums: for k > 1, set
k k k
Pe(X1, -y Xn) =X+ x5 + -+ X,
It is an algebraic basis, i.e. p, = []; p; is a linear basis.

Hall scalar product:

<p,uapzz> = Op,vZy,
where z, = [T, i™ ) m;(p)!.
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N, > <hu dunctionsll
Schur functions

Another linear basis: (hysy) defined by

Remarks:
@ Schur functions have several other equivalent descriptions.

° by = gy
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Schur functions

Schur functions

Another linear basis: (hysy) defined by
orthogonality (sx,s,) = 0 whenever \ #

triangularity If sy =3_ cﬁ‘l\N/I“, then cﬁ‘ =0 for pt Ldom A
normalization [pin]hysy = 1.

Unicity: Gram-Schmidt orthogonalization process with <.

Remarks:
@ Schur functions have several other equivalent descriptions.

° hy= dlm(V)\)
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Schur functions

Young symmetrizer formula

Fix a filling T of the Young diagram .

Example : A =31, T = i 2|3|.
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Young symmetrizer formula
Fix a filling T of the Young diagram .

Example : A=31, T = i 2|3|.

hsy=>_ Y ;

where o (resp. 7) is a permutation preserving the rows (resp. columns) of
T.

Ao [1d](@2)](13)](23)](123)](132)
Id
(14)
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Schur functions

Young symmetrizer formula

Fix a filling T of the Young diagram .

Example : A =31, T =

e = Y

1 2|3|

4]

pcycle type(or—1)»

where o (resp. 7) is a permutation preserving the rows (resp. columns) of

T.
Table of o771
m\o Id | 12) | @3) ] (@3) | (123) | (132
ld,e=1 id | (12) | (13) | (23) | (123) | (132)
(14),e=—-1((14)]|(142)|(143)|(14)(23)|(1423)((1432)
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Schur functions

Young symmetrizer formula

Fix a filling T of the Young diagram .

Example : A =31, T =

1

2|3|

4

h>\5)\ = Z Z E(T)pcycle—type(arfl)v

where o (resp. 7) is a permutation preserving the rows (resp. columns) of

T.
Table of Peycle-type(or—1)-
T\o Id (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
Id,e =1 P14 | P211 | P211 | P211 P31 P31
(14),e=—1|po1x| P31 | P31 | P2 Pa Pa
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Schur functions

Young symmetrizer formula

Fix a filling T of the Young diagram .

Example : A=31, T = i 2|3|.

h>\5)\ = Z Z E(T)pcycle—type(arfl)v

where o (resp. 7) is a permutation preserving the rows (resp. columns) of
T.

Table of Peycle-type(or—1)-

T\O’ Id (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
Id,e =1 P14 | P211 | P211 | P211 P31 P31
(14),e=—1|po1x| P31 | P31 | P2 Pa Pa

Finally,
h31531 = p1a + 2po11 — P22 — 2ps
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Jack polynomials

Definition of Jack polynomials

Deformed scalar product:

(p;u pl/>a = 5;;,1/2;1()/(#)'

J/(\a): one-parameter deformation of (hysy) defined by
orthogonality <J§\a), ,(fl)>a = 0 whenever \ # .
triangularity If Jg\a) = Z# C;‘MM, then cﬁ‘ =0 for p Ldom A-

normalization [pln]Jga) =1

Rk: Jg\l) = h)\S)\.
a = 2: zonal polynomials (they have a representation-theoretical meaning)
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An extension of Young symmetrizer formula?

Problem (Hanlon, 1988)

Find an o deformation of Young symmetrizer formula.
More precisely, find a statistics (o, 7) such that

J(O‘ Z Z e(m)a Pcycle type(or—1)
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An extension of Young symmetrizer formula?

Problem (Hanlon, 1988)

Find an o deformation of Young symmetrizer formula.
More precisely, find a statistics (o, 7) such that

J(O‘ Z Z e(m)a Pcycle type(or—1)

It seems very hard!
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An extension of Young symmetrizer formula?

Problem (Hanlon, 1988)

Find an o deformation of Young symmetrizer formula.
More precisely, find a statistics (o, 7) such that

J(a Z Z pcycle type(or—1)

It seems very hard!

Our result: for a = 2, it is easier to change the sum index and consider
pairings instead of permutations!
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Pairings and zonal polynomials

Pairings

Definition
A pairing of [2n] = {1,2,...,2n} is a partition of the set [2n] into pairs. J

Example: Sy = {{1,2}, {3,4},...,{2n— 1,2n}}.
Short notation: 12|34]....
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Pairings and zonal polynomials

Pairings

Definition

A pairing of [2n] = {1,2,...,2n} is a partition of the set [2n] into pairs. J

Example: Sy = {{1,2}, {3,4},...,{2n— 1,2n}}.
Short notation: 12|34]....

Type of a couple of pairings (analogue of cycle-type(o7~1)):

We consider We associate the graph
S1 = 13]24]56; 1 3 5®
S, = 12|34/56. > .
2 4 6®
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Pairings and zonal polynomials
Pairings

Definition
A pairing of [2n] = {1,2,...,2n} is a partition of the set [2n] into pairs. J

Example: Sy = {{1,2}, {3,4},...,{2n— 1,2n}}.
Short notation: 12|34]....

Type of a couple of pairings (analogue of cycle-type(o7~1)):

We consider We associate the graph
S1 = 13]24]56; 1 3 5e
S, = 123456. <> .
2 4 6®

Then type(S1, S2) is by definition the semi-lengths of the cycles in
non-increasing order. Here, type(S1,S2) = (2,1).
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Pairings and zonal polynomials
Pairings

Definition
A pairing of [2n] = {1,2,...,2n} is a partition of the set [2n] into pairs. J

Example: Sy = {{1,2}, {3,4},...,{2n— 1,2n}}.
Short notation: 12|34]....

Type of a couple of pairings (analogue of cycle-type(o7~1)):

We consider We associate the graph
S1 = 13]24]56; 1 3 5e
S, = 12|34/56. <>
2 4 6®

Then type(S1, S2) is by definition the semi-lengths of the cycles in
non-increasing order. Here, type(S1,S2) = (2,1).

Y- - n—#cycles
Sign: £(S1, S2) := (—1)n—#eycles,
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Pairings and zonal polynomials

The main theorem

Fix a filling T of the Young diagram 2.

Example : A\ =21, T =

1

2

5

6

3140 (1) = 12134556

V. Féray and P. Sniady () Dual combinatorics of zonal polynomials FPSAC 2011, Reykjavik

10 / 14



Pairings and zonal polynomials

The main theorem

Fix a filling T of the Young diagram 2.

Example : A =21, T = é g 3[4 , S(T) = 12|34|56.

=3 :

S1 S

@ S; is a pairing preserving the rows of T.
@ S, is a pairing associating elements of the 2/ + 1-th column of T with
elements of the 2/ 4+ 2-th column.

S\S 12|34|56 | 13[24/56 | 14]23|56
12[34]56,
16]25[34,
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Pairings and zonal polynomials

The main theorem

Fix a filling T of the Young diagram 2.

Example : A\ =21, T =

Table of Ptype(51,S2)-

1

2

3|4\

(T) = 12|34/56.
ZZ (T),52)Pype(si,ss)s
l 2

@ S; is a pairing preserving the rows of T.
@ S, is a pairing associating elements of the 2/ + 1-th column of T with
elements of the 2/ 4+ 2-th column.

S\S1 12|34]56 | 13|24/|56 | 14|23|56
12|34]56,e =1 P13 P21 P21
16[25[34,e = -1 | pz P3 P3
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Pairings and zonal polynomials

The main theorem

Fix a filling T of the Young diagram 2.

Example : A\ =21, T =

Table of Ptype(51,S2)-

1

2

3|4\

(T) = 12|34/56.
ZZ (T),52)Pype(si,ss)s
l 2

@ S; is a pairing preserving the rows of T.
@ S, is a pairing associating elements of the 2/ + 1-th column of T with
elements of the 2/ 4+ 2-th column.

S\S1 12|34]56 | 13|24/|56 | 14|23|56
12|34]56,e =1 P13 P21 P21
16[25[34,e = -1 | pz P3 P3

Finally,

(2)
S =Pz + P —2p3
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Outline of the proof

Set Yy = ZZ (T),52)Prype(s,,s,)- One has to prove
S1 S

@ Triangularity : if Y, = Z# C;‘I\Nﬂu, then cﬁ‘ = 0 whenever 1 Liex A

@ Orthogonality : (Y, Y,) =0if A # p.
© Normalization : [p1n] Yy = 1.
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Outline of the proof

Set Yy = ZZ (T),52)Prype(s,,s,)- One has to prove
S1 S

@ Triangularity : if Y, = Z# C;‘/\Nﬂu, then cﬁ‘ = 0 whenever 1 Liex A

@ Orthogonality : (Y, Y,) =0if A # p.
© Normalization : [p1n] Yy = 1.

3 is easy: type(S51,52) =1"< 51 =5 =5(T).
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Sketch of proof

Outline of the proof

Set Yy = ZZ (T),52)Prype(s,,s,)- One has to prove
S1 S

@ Triangularity : if Y, = Z# C;‘/\Nﬂu, then cﬁ‘ = 0 whenever 1 Liex A
@ Orthogonality : (Y, Y,) =0if A # p.
© Normalization : [p1n] Yy = 1.

3 is easy: type(S51,52) =1"< 51 =5 =5(T).

1 and 2 are harder. The proof relies on sign-reversing involution principle.
We will explain it for 1.
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Sketch of proof

Outline of the proof

Set Yy = ZZ (T),52)Prype(s,,s,)- One has to prove
S1 S

@ Triangularity : if Y, = Z# CjANJM, then cﬁ‘ = 0 whenever 1 Liex A
@ Orthogonality : (Y, Y,) =0if A # p.
© Normalization : [p1n] Yy = 1.

3 is easy: type(S51,52) =1"< 51 =5 =5(T).

1 and 2 are harder. The proof relies on sign-reversing involution principle.
We will explain it for 1.

Rk: our original proof used representation theory.
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Proof of triangularity (1/2)

2 pairings — graph — set-partition +—> partition
51 = 13|24|56 B ’ |_|51752 = type
S, =12[34/56; T O 7 1234/56 (2.1)
Recall that Y, = Z Z (T),S2) ptype(ns1 s)-
S1 S
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Proof of triangularity (1/2)

2 pairings — graph — set-partition +—> partition
51 = 13|24|56 B ’ |_|51752 = type
S, =12[34/56; T O 7 1234/56 (2.1)
Recall that Y, = Z Z (T),S2) ptype(ns1 s)-
S1 S

In terms of I\N/I

Y\ = Z Z T),5) Z Mtype(l_l)
1 2

I'IS1 ,So finer
than N
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Proof of triangularity (1/2)

2 pairings — graph — set-partition +—> partition
51 = 13|24|56 B ’ |_|51752 = type
S, =12[34/56; T O 7 1234/56 (2.1)
Recall that Y, = Z Z (T),S2) ptype(ns1 s)-
S1 S

In terms of I\N/I

Y\ = Z Z T),5) Z Mtype(l_l)
1 2

nS]_,Sz finer
than N

Z Mtype(l'l) Z e(5(T), 52)

M even 51,52
t-partiti n <n
set-partition 51,5, <
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Proof of triangularity (2/2)

Recall Yy = Z /\~//type(r|) Z £(5(7), %2)
n

51.5
Ms;,55 =N

We want to show that (...) = 0 whenever type(I) £jex A.
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n

51.5
Ms;,55 =N

We want to show that (...) = 0 whenever type() £dom .
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Sketch of proof

Proof of triangularity (2/2)

Recall Yy = Z /\~//type(r|) Z £(5(7), %2)
n

51,52
I'Is:l’_g2 <n

We want to show that (...) = 0 whenever type(I) £gom A

Idea. Find i and j (depending on I but not on S, Sy!) such that,
for any S; and S5:

£(S(T), ) +(S(T), 557y =0,
|_|5152§|_|<:>|_| ,J)<|_|

S, fulfills the column condition < Sé ’J) fulfills the column condition,

where 52(i’j) is obtained from S, by exchanging i/ and j.
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Sketch of proof

Proof of triangularity (2/2)

Recall Yy = Z /\~//type(r|) Z £(5(7), %2)
n

$1,5;
Ms; s, <N

We want to show that (...) = 0 whenever type(I) £gom A

Idea. Find i and j (depending on I but not on S, Sy!) such that,
for any S; and S5:

e(S(T), S2) +e(S(T), 55 =
|_|5152§|_|<:>|_| ,J)<|_|

S, fulfills the column condition < Sé ’J) fulfills the column condition.

Fact. it is enough to choose i and j such that:
@ / and j are in the same part of I1;
@ / and j are in the same column of T.
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Sketch of proof

Proof of triangularity (2/2)

Recall Yy = Z /\~//type(r|) Z £(5(7), %2)
n

$1,5;
Ms; s, <N

We want to show that (...) = 0 whenever type(I) £gom A

Idea. Find i and j (depending on I but not on S, Sy!) such that,
for any S; and S5:

e(S(T), S2) +e(S(T), 55 =
|_|5152§|_|<:>|_| ,J)<|_|

S, fulfills the column condition < Sé ’J) fulfills the column condition.

Fact. it is enough to choose i and j such that:
@ / and j are in the same part of I1;
@ / and j are in the same column of T.

Lemma: They always exist if type(I) £dom . O
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Why is this formula useful?

Conclusion

Let u = k and A+ n with kK < n.

With this formula, one can write

2
[p1ni] S

as a sum whose index set depends on k and not on n.

V. Féray and P. Sniady () Dual combinatorics of zonal polynomials FPSAC 2011, Reykjavik 14 / 14



Conclusion
Let u = k and A+ n with kK < n.
With this formula, one can write
[pn 17
as a sum whose index set depends on k and not on n.

In particular, we can prove some recent conjectures of M. Lassalle on
[p‘u‘lnfk]..lg\a) in the case o = 2.
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Why is this formula useful?

Conclusion

Let u = k and A+ n with kK < n.
With this formula, one can write
[p,u,l”*k]‘jgf)
as a sum whose index set depends on k and not on n.

In particular, we can prove some recent conjectures of M. Lassalle on
[pulnfk]..lg\a) in the case o = 2.

Still work to do: is there an extension for general a?

Thanks for listening!
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