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Introduction

Context

Question

Asymptotic behavior of some models of random Young diagrams ?

In other terms:

For each n, we give a probability measure on Young diagrams of size n.

A Young diagram of size 10.
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Introduction

Context

Question

Asymptotic behavior of some models of random Young diagrams ?

In other terms:

For each n, we give a probability measure on Young diagrams of size n.

Questions: convergence of the first k rows? Convergence of some
other parameters? Continuous limit shape after some rescaling?

For some measures, representation theory of symmetric groups is a good
tool to answer these questions.
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Introduction

Outline of the talk

1 Representations of symmetric groups and functions on Young diagrams.

2 q-Plancherel measure
Plancherel measure
A q-deformation
Asymptotic behavior
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Representation theory of symmetric groups Polynomial functions on the set of Young diagrams

Irreducible character values

Fact

Irreducible representations (V , ρ) of the symmetric group are (canonically)
indexed by Young diagrams λ of size n.

If σ ∈ Sn, we look at its normalized trace on Vλ, i.e. :

χλ(σ) =
Tr

(

ρλ(σ)
)

dim(Vλ)
.
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Representation theory of symmetric groups Polynomial functions on the set of Young diagrams

Polynomial functions on the set of Young diagrams

Let σ ∈ Sk . We define the following function on all Young diagrams:

Chσ(λ) =

{

n↓kχλ(σ̃) if λ ⊢ n ≥ k
0 if λ ⊢ n < k

where n↓k = n(n − 1) . . . (n − k + 1)
and σ̃ is the image of σ by the canonical inclusion Sk →֒ Sn (we just add
fixed points to have a permutation in Sn).

Theorem

The random variables Chσ span linearly a C-algebra O.

Example: Ch(2) · Ch(2) = 4 · Ch(3) + Ch(2,2) + 2Ch(1,1).
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Polynomial functions on the set of Young diagrams

Let σ ∈ Sk . We define the following function on all Young diagrams:

Chσ(λ) =

{

n↓kχλ(σ̃) if λ ⊢ n ≥ k
0 if λ ⊢ n < k

where n↓k = n(n − 1) . . . (n − k + 1)
and σ̃ is the image of σ by the canonical inclusion Sk →֒ Sn (we just add
fixed points to have a permutation in Sn).

Theorem

The random variables Chσ span linearly a C-algebra O.

We will describe an algebraic basis of this algebra.
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Representation theory of symmetric groups Polynomial functions on the set of Young diagrams

Frobenius coordinates and their power sums

If λ is a Young diagram, define its Forbenius coordinates (ai , bi ), 1 ≤ i ≤ h
as follows:

a1a2a3a4a5a6-b1 -b2 -b3 -b4 -b5 -b6

ai = λi − i + 1/2 > 0, bi = λ′
i − i + 1/2 > 0
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Representation theory of symmetric groups Polynomial functions on the set of Young diagrams

Frobenius coordinates and their power sums

If λ is a Young diagram, define its Forbenius coordinates (ai , bi ), 1 ≤ i ≤ h
as follows:

a1a2a3a4a5a6-b1 -b2 -b3 -b4 -b5 -b6

pm(Fλ) :=
∑

am
i − (−bi )

m
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Representation theory of symmetric groups Polynomial functions on the set of Young diagrams

Character values in terms of Frobenius coordinates

Fix a permutation σ ∈ Sk .
Denote ℓ1, . . . , ℓr the length of its cycles.

Theorem

For all Young diagrams λ,

Chσ(λ) =

r
∏

j=1

pℓj (Fλ) + Pσ(p1(Fλ), p2(Fλ), . . . ),

where Pσ is a polynomial in variables p1, p2, . . . of degree smaller than k
(by definition, deg(pm) = m) which does not depend on λ.

Ex: Ch(1 2 3 4) = p4 − 4p2 · p1 + 11/2 p2.
Ch(1 2 3)(4 5) = p3 · p2 + 6p4 − 3/2 p2 · p

2
1 − 67/4 p2p1 + 21p2.
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Representation theory of symmetric groups Polynomial functions on the set of Young diagrams

Character values in terms of Frobenius coordinates

Fix a permutation σ ∈ Sk .
Denote ℓ1, . . . , ℓr the length of its cycles.

Theorem

For all Young diagrams λ,

Chσ(λ) =
r
∏

j=1

pℓj (Fλ) + Pσ(p1(Fλ), p2(Fλ), . . . ),

where Pσ is a polynomial in variables p1, p2, . . . of degree smaller than k
(by definition, deg(pm) = m) which does not depend on λ.

Explicit formula in the one-cycle case (Wasserman, 1981);

Easy to extend to the general case using Faharat-Higman algebra
(1957).
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Representation theory of symmetric groups Polynomial functions on the set of Young diagrams

Inverting the previous formula

Consequence: if we define

Od = Vect





⋃

1≤k≤d

⋃

σ∈Sk

Chσ



 ,

then O =
⋃

Od is a filtered algebra.

pm(Fλ) can be expressed as a linear combination of Chσ. Ex:

p3 = Ch(1 2 3) + 3/2 Ch(1)(2) + 1/4 Ch(1);

p2
2 = Ch(1 2)(3 4) + 4Ch(1 2 3) + 2Ch(1)(2).

(

λ 7→
∏

pmi
(Fλ)

)

= Chσ + smaller degree terms,

where σ is a permutation with cycles of length m1, . . . ,mr .
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q-Plancherel measure Plancherel measure

The Plancherel measure

Pn : a measure on Young diagrams of size n.

1. can be defined by a Markov process:

1/3

1/2 1/2

1/32/3 2/3

1/4 3/4 1/43/4
3/83/8 1/4
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q-Plancherel measure Plancherel measure

The Plancherel measure

Pn : a measure on Young diagrams of size n.

Example of large random Young diagram:

limit shape: Kerov and Vershik / Logan and Shepp (1977);
Fluctuations: Kerov(1993), Ivanov-Olshanski (2003).
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q-Plancherel measure Plancherel measure

The Plancherel measure

Pn : a measure on Young diagrams of size n.

2. can be defined, using representation theory:

Pn({λ}) =
(dim Vλ)

2

n! .

Recall:
C[Sn] ≃

⊕

λ⊢n

V dim Vλ

λ

(action on C[Sn]: τ · (
∑

σ cσσ) =
∑

σ cστ ◦ σ.)

In this context :

Pn({λ}) =
dim(isotypic component of type λ)

dimC[Sn]
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q-Plancherel measure Plancherel measure

Normalized character values have simple expectations!

Let σ ∈ Sk . If n ≥ k and λ ⊢ n, recall that

Chσ(λ) = n(n − 1) . . . (n − k + 1) · χλ(σ̃)

Chσ can be seen as a random variable. Let us compute its expectation:

EPn(Chσ) =
n↓k

n!

∑

λ⊢n

(dim Vλ) · TrVλ
(σ̃)

=
n↓k

n!
Tr(⊕

λ⊢n V
dim Vλ

λ

)(σ̃) =
n↓k

n!
TrC[Sn](σ̃) = n↓k trC[Sn](σ̃)

Last expression is easy to evaluate:

EPn(Chσ) = n↓k δσ,Idk
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q-Plancherel measure A q-deformation

The q-Plancherel measure

q-Pn : a measure on Young diagrams of size n (we assume q < 1).

1. can be defined by a Markov process:

1
q+1

q

q+1

q2

q2+q+1

q+1
q2+q+1

q2+q

q2+q+1 1
q2+q+1

V. Féray (CNRS, LaBRI) Large Young diagrams Osaka, 2010-09-06 11 / 15



q-Plancherel measure A q-deformation

The q-Plancherel measure

q-Pn : a measure on Young diagrams of size n (we assume q < 1).

1. example of a large random diagram
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q-Plancherel measure A q-deformation

The q-Plancherel measure

q-Pn : a measure on Young diagrams of size n (we assume q < 1).

2. can be defined, using representation theory of Hecke algebras:

Similarly to Plancherel measure, one has

Eq-Pn

(

χq,•(Tσ)
)

= 0 if σ 6= 0,

where χq,λ is the character of the irreducible representation of the
Hecke algebra.
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q-Plancherel measure A q-deformation

The q-Plancherel measure

q-Pn : a measure on Young diagrams of size n (we assume q < 1).

2. can be defined, using representation theory of Hecke algebras:

Similarly to Plancherel measure, one has

Eq-Pn

(

χq,•(Tσ)
)

= 0 if σ 6= 0,

where χq,λ is the character of the irreducible representation of the
Hecke algebra.

One can translate this with usual characters:

Eq-Pn

(

Chσ) =
(1 − q)k

∏

j(1 − qℓj )
n↓k .
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q-Plancherel measure Asymptotic behavior

Filtration and order of magnitude

Lemma

x ∈ Od ⇒ E(x) = O(nd )

Proof: true on the generating family Chσ.

Application:

Eq-Pn(pm(Fλ)) ∼ Eq-Pn

(

Ch(1 ... m)

)

∼
(1 − q)m

1 − qm
nm

Varq-Pn(pm(Fλ)) = O(n2m−1)

pm(Fλ)

nm
converges in probability towards

(1 − q)m

1 − qm
.
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q-Plancherel measure Asymptotic behavior

Convergence of the first rows

But pm(Fλ)
nm is the (m − 1)-th moment of the probability measure

Xλ =

d
∑

i=1

(a∗i (λ)/n) δ(a∗i (λ)/n) + (b∗i (λ)/n) δ(−b∗

i (λ)/n)
.

and (1−q)m

1−qm the (m − 1)-th moment of

Xλ =
∑

i≥1

qi−1(1 − q)δqi−1(1−q)

We have convergence in probability of the repartition function at each
point x 6= qi−1(1 − q)

Theorem (F., Méliot 2010)

For every i ≥ 1, in probability

λi/n −→q-P qi−1(1 − q)
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q-Plancherel measure Asymptotic behavior

Remarks

Quite simple method:
1 Compute expectation of character value;
2 Deduce the convergence of some parameters (easy!);
3 Translate it on the shape of the Young diagram.

V. Féray (CNRS, LaBRI) Large Young diagrams Osaka, 2010-09-06 14 / 15



q-Plancherel measure Asymptotic behavior

Remarks

Quite simple method:
1 Compute expectation of character value;
2 Deduce the convergence of some parameters (easy!);
3 Translate it on the shape of the Young diagram.

This result could be deduced directly from step 1 using Martin
boundary theory.

V. Féray (CNRS, LaBRI) Large Young diagrams Osaka, 2010-09-06 14 / 15



q-Plancherel measure Asymptotic behavior

Remarks

Quite simple method:
1 Compute expectation of character value;
2 Deduce the convergence of some parameters (easy!);
3 Translate it on the shape of the Young diagram.

This result could be deduced directly from step 1 using Martin
boundary theory.

One can also obtain second-order asymptotics.

V. Féray (CNRS, LaBRI) Large Young diagrams Osaka, 2010-09-06 14 / 15



q-Plancherel measure Asymptotic behavior

Remarks

Quite simple method:
1 Compute expectation of character value;
2 Deduce the convergence of some parameters (easy!);
3 Translate it on the shape of the Young diagram.

This result could be deduced directly from step 1 using Martin
boundary theory.

One can also obtain second-order asymptotics.

Ideas come from a method of Kerov-Ivanov-Olshanski to study
fluctuations of Young diagrams under Plancherel measure
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q-Plancherel measure Asymptotic behavior

End of the talk

Thanks for listening.

Questions?
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