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Introduction

Question
Let m ≤ N with m ≡ N (mod 2). What is the numberB(N,m) of
permutationsσ of sizeN :

•with m cycles (notation :κ(σ) = m ) ;

•such that(1 2 . . . N)σ−1 is a long cycle?

Motivations
•particular cases of coefficients of some character polynomials (ask

for details!).

•surprising formula (Zagier [4], 1995) :
N(N + 1)

2
B(N,m) = |{σ ∈ SN+1 avecκ(σ) = m}| (1)

=: A(N + 1, m) (Stirling number)

Main result
•A combinatorial proofof (1) (asked by Stanley [3], 2009).

•A refinementtaking the cycle type of permutations into account.

Reformulation using maps
Permutations≃ Unicellular red-rooted bipartite maps

σ = (1 6)(2 7 3)(4)(5 8), (1 2 . . . N)σ−1 = (1 7 3 8 6 2 4 5)

↔

⇒ B(N,m) =
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rooted unicellular bipartite maps
with N edges

with 1 red andm blue vertices
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A(N + 1, m) =
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rooted unicellular bipartite maps
with N + 1 edges

andm blue vertices
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Is there a bijection explaining equation (1)?
We didn’t manage to construct a direct one.

Blue-partitioned maps and star thorn trees

Equivalent statement

Definition 1. A blue-partitioned mapis a map with a partition of its
blue vertices.

•C(N,m) := # rooted unicellular bipartite map withN edges andm
blocksof blue vertices.

•D(N,m) := # same objects with only one red vertex.

Proposition 2.
∑

p

C(N, p)(x)p =
∑

A(N,m)xm

∑

p

D(N, p)(x)p =
∑

B(N,m)xm

Remark 3. The refined version uses symmetric functions!

⇒ Equation (1) is equivalent to:

∀ p ≤ N, N(N + 1)D(N, p) = C(N + 1, p) (2)

Theorem 4 (Morales, V. [2], 2009). The quantityC(N, p) is also the
number of permuted star thorn trees i.e. bicolored trees with:

•only1 red vertex (the root);

•p blue vertices;

•N − p thornsof blue (resp.
red) extremity;

•a bijection between thorns
of blue extremity and thorns
of red extremity.

Corollary 5.

(N + 1− p)C(N + 1, p) = N(N + 1)C(N, p)

Therefore, Equation (1)⇔ (N + 1− p)D(N, p) = C(N, p)

Combinatorial construction

From partitioned maps to permuted star thorn trees
Idea : merge vertices of the same block and cut all edges except one
per block

7→

Rules to merge vertices and choose which edges to keep:

1. Draw each vertex with its maxi-
mum as right-most edge and order
them in decreasing order of their
maxima (like in Foata’s transform).

2. Merge vertices and keep the left-most edge.

Proposition 6.• Injective mapping(ask for a demo of the inverse).

• Its image can be characterized using auxiliary graphs:

Using this characterization, one can check that the proportion of the
image is 1

N−p+1.

Remarks

•Another simpler combinatorial proof has been found recently in [1].

•Analogue results for maps on locally orientable surfaces?
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