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One word about combinatorics team in Bordeaux

Centers of interest:

Bijective, enumerative and algebraic combinatorics of maps (Bonichon,
Bousquet-Mélou, Cori, F., Marcus, Zvonkine).

Combinatorics of alternating sign matrices and tableaux (Aval,
Duchon, Guibert, Viennot).

Symmetric functions and generalization (Aval, F.).

Generating series and random sampling (Bousquet-Mélou, Duchon,
Marckert).
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Context

Irreducible character values of symmetric group

Irreducible representations of Sn ≃ Young diagrams λ ⊢ n.

We are interested in normalized character values:

χλ(σ) =
tr
(
ρλ(σ)

)

dim(Vλ)
.

We will look at it as a function

λ 7→ χλ(σ).

Motivations:
Shape of large random Young diagrams;

Convergence rate of some process, complexity of algorithms.
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Context

Outline of the talk

1 Introduction
Shifted symmetric functions
Why do we need a bigger algebra?

2 Algebra of quasi-symmetric functions on Young diagrams
Functions indexed by graphs
Linear basis and relations
A combinatorial invariant

3 Application: combinatorics of Kerov’s polynomials

4 To go further
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Introduction Shifted symmetric functions

Kerov’s and Olshanski’s approach

Let us define

Chµ :
Y → Q;
λ 7→ n(n − 1) . . . (n − k + 1)χλ(σ),

where n = |λ|, k = |µ|
and σ is a permutation in Sn of cycle type µ1n−k .

Examples:

Chµ(λ) = 0 as soon as |λ| < |µ|

Ch1k (λ) = n(n − 1) . . . (n − k + 1) for any λ ⊢ n

Ch(2)(λ) = n(n − 1)χλ
(
(1 2)

)
=

∑

i

(λi )
2 − (λ′i )

2

Chµ∪1(λ) = (n − |µ|)Chµ(λ) for any λ ⊢ n

Valentin Féray (LaBRI, CNRS) Functions on Young diagrams 2010-06-08 5 / 20



Introduction Shifted symmetric functions

Kerov’s and Olshanski’s approach

Let us define

Chµ :
Y → Q;
λ 7→ n(n − 1) . . . (n − k + 1)χλ(σ),

where n = |λ|, k = |µ|
and σ is a permutation in Sn of cycle type µ1n−k .

Proposition

The functions Chµ, when µ runs over all partitions, are linearly independent.

Moreover, they span a subalgebra Λ⋆ of functions on Young diagrams.

Example: Ch(2) ·Ch(2) = 4 · Ch(3) +Ch(2,2)+2Ch(1,1).
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Introduction Why do we need a bigger algebra?

A formula for character values

Theorem (F. 2006, conjectured by Stanley)

Let µ ⊢ k.

Chµ =
∑

M

±NG(M),

where:

the sum runs over rooted bipartite maps with k edges and face-length

µ1, µ2, . . .

G (M) is the underlying graph of M.

NG is a function on Young diagrams which will be defined later.

In general, NG /∈ Λ⋆.

−→ We have to work in the bigger algebra Q := Vect(NG ).
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Quasi-symmetric functions on Young diagrams Functions indexed by graphs

Definition of the NG

Let G be a bipartite graph and λ a partition :

a

b

c
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Quasi-symmetric functions on Young diagrams Functions indexed by graphs

Definition of the NG

Let G be a bipartite graph and λ a partition :

a

b

c
a

b c

NG (λ) is the number of ways to:

associate to each edge of the graph a box of the diagram;
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Quasi-symmetric functions on Young diagrams Functions indexed by graphs

Definition of the NG

Let G be a bipartite graph and λ a partition :

a

b

c
a

b c

NG (λ) is the number of ways to:

associate to each edge of the graph a box of the diagram;

boxes correxponding to edges with the same white (resp. black)
extremity must be in the same row (resp. column)
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Quasi-symmetric functions on Young diagrams Functions indexed by graphs

Definition of the NG

Let G be a bipartite graph and λ a partition :

a

b

c
a

b, c

NG (λ) is the number of ways to:

associate to each edge of the graph a box of the diagram;

boxes correxponding to edges with the same white (resp. black)
extremity must be in the same row (resp. column)
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Quasi-symmetric functions on Young diagrams Functions indexed by graphs

An interesting particular case: rectangular partition

λ =

q

p

NG (λ) = p|V◦(G)| · q|V•(G)|

Indeed, one has to choose independently:
one row per white vertex ;
one column per black vertex.
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Quasi-symmetric functions on Young diagrams Functions indexed by graphs

An interesting particular case: rectangular partition

λ =

q

p

NG (λ) = p|V◦(G)| · q|V•(G)|

Indeed, one has to choose independently:
one row per white vertex ;
one column per black vertex.

In this case,

Chmu




q, . . . , q
︸ ︷︷ ︸

p times




 =

∑

M

±p|V◦(M)| · q|V•(M)| (Stanley, 2003)
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Quasi-symmetric functions on Young diagrams Functions indexed by graphs

Stanley’s coordinates

λ =

p
1

q1

p
2

q2

p
3

q3

NG (λ) =
∑

ϕ:V◦(G)→N⋆

∏

◦∈V◦

pϕ(◦)
∏

•∈V•

qψ(•),

where ψ(•) = max
◦ neighbourg of •

ϕ(◦).
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Quasi-symmetric functions on Young diagrams Linear basis and relations

The graphs GI

Definition

Let I = (i1, i2, . . . , ir ) be a composition. Define GI as the following
bipartite graph:

i1 -1 black

vertices
i2 -1 black

vertices

i_r -1 black

vertices
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Quasi-symmetric functions on Young diagrams Linear basis and relations

The graphs GI

Definition

Let I = (i1, i2, . . . , ir ) be a composition. Define GI as the following
bipartite graph:

i1 -1 black

vertices
i2 -1 black

vertices

i_r -1 black

vertices

Proposition

The NGI
’s are linearly independent when I runs over all compositions.
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Quasi-symmetric functions on Young diagrams Linear basis and relations

The NGI
’s are linearly independent: proof

GI =

Consider NGI
(p1, p2, . . . , pr , q1, q2, . . . , qr ) (we truncate the alphabets)

As total degree in p is r , monomials without powers of p are:

MJ = p1q
j1−1
1 p2q

j2−1
2 · · · prq

jr−1
r ,

where J is a composition of n (total number of vertices)
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Quasi-symmetric functions on Young diagrams Linear basis and relations

The NGI
’s are linearly independent: proof

GI =

NGI
= cI MI +

∑

|J|=|I |=n, ℓ(J)=ℓ(I )=r

J≥I

cI ,JMJ

+ non-p-square-free terms.

≥ stands for the right-dominance order.
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Quasi-symmetric functions on Young diagrams Linear basis and relations

The poinçonnage relation

Select a cycle in a bipartite graph. Let us consider the local operation:
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Quasi-symmetric functions on Young diagrams Linear basis and relations

The poinçonnage relation

Select a cycle in a bipartite graph. Let us consider the local operation:

Example:

7−→ + −

Valentin Féray (LaBRI, CNRS) Functions on Young diagrams 2010-06-08 12 / 20



Quasi-symmetric functions on Young diagrams Linear basis and relations

The poinçonnage relation

Select a cycle in a bipartite graph. Let us consider the local operation:

Example:

7−→ + −

Proposition

N is invariant by this transformation.
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Quasi-symmetric functions on Young diagrams Linear basis and relations

Linear basis and relation of Vect(NG)

Theorem

The NGI
span the whole space Q = Vect(NG ).

All relations can be deduced from the poinçonnage relation.
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Quasi-symmetric functions on Young diagrams Linear basis and relations

Linear basis and relation of Vect(NG)

Theorem

The NGI
span the whole space Q = Vect(NG ).

All relations can be deduced from the poinçonnage relation.

Sketch of proof.

If G 6= GI for all I , one has, using poinçonnage:

NG =
∑

±NG ′ ,

where the sum runs over graphs G ′ with strictly more edges.
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Quasi-symmetric functions on Young diagrams Linear basis and relations

Linear basis and relation of Vect(NG)

Theorem

The NGI
span the whole space Q = Vect(NG ).

All relations can be deduced from the poinçonnage relation.

Sketch of proof.

If G 6= GI for all I , one has, using poinçonnage:

NG =
∑

±NG ′ ,

where the sum runs over graphs G ′ with strictly more edges.

Remark:

Q is isomorphic with quasi symmetric functions.

Combinatorial description of the coproduct.
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Quasi-symmetric functions on Young diagrams A combinatorial invariant

q-admissible graphs

a
b

c

d
e

f

3

2

Bipartite G endowed
with q : V• → N⋆

associated system
−→ (Sq

G )







xa + xb + xc =3 − 1
xd + xe + xf =2 − 1
xa + xd = 1
xb + xe = 1
xc + xf = 1

Definition

G is said q-admissible
if the associated system has a solution with xi > 0.

Valentin Féray (LaBRI, CNRS) Functions on Young diagrams 2010-06-08 14 / 20



Quasi-symmetric functions on Young diagrams A combinatorial invariant

q-admissible graphs

a
b

c

d
e

f

3

2

Bipartite G endowed
with q : V• → N⋆

associated system
−→ (Sq

G )







xa + xb + xc =3 − 1
xd + xe + xf =2 − 1
xa + xd = 1
xb + xe = 1
xc + xf = 1

Proposition

G is q-admissible

⇔ ∀A ⊂ V• non trivial, |Neighbours(A)| >
∑

v∈A(qv − 1)
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Quasi-symmetric functions on Young diagrams A combinatorial invariant

q-admissible graphs

a
b

c

d
e

f

3

2

Bipartite G endowed
with q : V• → N⋆

associated system
−→ (Sq

G )







xa + xb + xc =3 − 1
xd + xe + xf =2 − 1
xa + xd = 1
xb + xe = 1
xc + xf = 1

Theorem (Dołęga, F., Śniady, 2009)

(−1)#c.c.[G q-admissible] invariant by poinçonnage!
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Quasi-symmetric functions on Young diagrams A combinatorial invariant

q-admissible graphs

a
b

c

d
e

f

3

2

Bipartite G endowed
with q : V• → N⋆

associated system
−→ (Sq

G )







xa + xb + xc =3 − 1
xd + xe + xf =2 − 1
xa + xd = 1
xb + xe = 1
xc + xf = 1

Theorem (Dołęga, F., Śniady, 2009)

(−1)#c.c.[G q-admissible] invariant by poinçonnage!

Non trivial proof, using Euler’s characteristic
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Quasi-symmetric functions on Young diagrams A combinatorial invariant

Consequence in Q

Let π be a partition. Define

Fπ(G ) = (−1)#c.c.

∣
∣
∣
∣

{

q : V•(G ) → N⋆ s.t.
Im(q) = {πi} (as multisets)
G q-admissible

}∣
∣
∣
∣

Then, if X =
∑

cGNG ∈ Q,

Fπ(X ) =
∑

cGFπ(G )

is well-defined.
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Application Kerov’s polynomials

Free cumulants

Definition (Free cumulants)

Rk =
∑

T

±NT ,

where the sum runs over bipartite rooted planar tree with k vertices.

can be defined more directly using the shape of the diagram.

R2,R3, . . . form an algebraic basis of Λ⋆.

Therefore Chµ = Kµ(R2,R3, . . . ),
where Kµ is a polynomial (Kerov’s polynomial).

Question (Kerov, 2000)

Combinatorics of Kµ?
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Application Kerov’s polynomials

Coefficients of Kerov’s polynomials

If τ is a partition, denote Rτ =
∏

i Rτi .

Easy to check that Fπ(Rτ ) = (−1)ℓ(π)δτ,π.

Therefore

Fπ(Chµ) = (−1)π[Rπ]Kµ

=
∑

±Fπ(G ),

where the sum runs over bipartite rooted maps whose faces have length
µ1, µ2, . . .

Theorem (Dołęga, F., Śniady, 2009)

[Rπ]Kµ counts signed maps of face-type µ with conditions on the number

of neighbours of subsets of black vertices.
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To go further

Extension to Jack polynomials

χλµ can be defined by:

sλ =
∑

µ

χλµ
pµ

zµ
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To go further

Extension to Jack polynomials

χλµ can be defined by:

sλ =
∑

µ

χλµ
pµ

zµ

By replacing Schur function sλ by the Jack polynomial J
(α)
λ , one can define

a continuous deformation Ch(α)µ of Chµ = Ch(1)µ .
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To go further

Extension to Jack polynomials

χλµ can be defined by:

sλ =
∑

µ

χλµ
pµ

zµ

By replacing Schur function sλ by the Jack polynomial J
(α)
λ , one can define

a continuous deformation Ch(α)µ of Chµ = Ch(1)µ .

They belong to Λ⋆.

Combinatorics like in α = 1 case?
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To go further

Maps on locally oriented surfaces

Case α = 2 (zonal polynomials):

Theorem (F., Śniady 2010)

Let µ ⊢ k.

Ch(2)µ =
∑

M

±NG(M),

where the sum runs over rooted bipartite maps on locally oriented

surfaces with k edges and face-length µ1, µ2, . . .

=⇒ combinatorial description in terms of the Rℓ’s.
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To go further

Maps on locally oriented surfaces

Case α = 2 (zonal polynomials):

Theorem (F., Śniady 2010)

Let µ ⊢ k.

Ch(2)µ =
∑

M

±NG(M),

where the sum runs over rooted bipartite maps on locally oriented

surfaces with k edges and face-length µ1, µ2, . . .

=⇒ combinatorial description in terms of the Rℓ’s.

Conjecture for general α = 1 + β:
Maps are counted with a weight depending on β (like in Matching-Jack’s
conjecture).
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To go further

End of the talk

Thanks for listening

Do you have any questions?
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