Random Young diagrams and tableaux Lecture 5: determinantal point processes

Valentin Féray

CNRS, Université de Lorraine

Summer school in algebraic combinatorics, Kraków, Poland, July 2022

What is a (discrete) determinantal point process?

Notation:

- E is a (discrete) countable set;
- $X \subseteq E$ is a random subset of E;
- $K: E \times E \rightarrow \mathbb{R}$ a function called kernel.

Definition

X is a determinantal point process (DPP) if, for any finite subset $A \subset E$, one has

$$
\mathbb{P}(A \subseteq X)=\operatorname{det}\left[(K(x, y))_{a, b \in A}\right] .
$$

Many instances: eigenvalues of random matrices, edge set of uniform spanning tree of any graph, descent set of a uniform random permutation, random diagrams and tableaux...

Why are DPPs useful?

Consider a sequence of DPP X_{n} on a set E, with kernel K_{n}.
Assume that, for some α_{n} and β_{n}, we have: for all a, b in E

$$
\lim \beta_{n} K_{n}\left(\alpha_{n}+\beta_{n} a, \alpha_{n}+\beta_{n} b\right)=K(a, b)
$$

Then the normalized sets

$$
\widetilde{X}_{n}=\left\{x: \alpha_{n}+\beta_{n} x \in X_{n}\right\}
$$

converge to a DPP of kernel K.

Poissonized Plancherel measure is a DPP

Reminder: for a diagram $\lambda, D(\lambda)$ are the x-coordinate of the (middle) of its down steps.
Poissonized Plancherel measure with parameter θ :

$$
\mathbb{P}_{\theta}(\lambda)=e^{-\theta} \theta^{|\lambda|} \frac{\operatorname{dim}(\lambda)}{|\lambda|!} .
$$

This is a probability of the set of Young diagrams of all sizes, but if $\theta=n$, it ressembles the Plancherel measure on diagrams of size n.

Poissonized Plancherel measure is a DPP

Reminder: for a diagram $\lambda, D(\lambda)$ are the x-coordinate of the (middle) of its down steps.
Poissonized Plancherel measure with parameter θ :

$$
\mathbb{P}_{\theta}(\lambda)=e^{-\theta} \theta^{|\lambda|} \frac{\operatorname{dim}(\lambda)}{|\lambda|!}
$$

This is a probability of the set of Young diagrams of all sizes, but if $\theta=n$, it ressembles the Plancherel measure on diagrams of size n.

Theorem (Borodin, Okounkov, Olshanski, '00)
If λ has distribution \mathbb{P}_{θ}, then $D(\lambda)$ is a DPP with kernel

$$
K_{\theta}(a, b):=\sqrt{\theta} \frac{J_{a-\frac{1}{2}}(2 \sqrt{\theta}) J_{b+\frac{1}{2}}(2 \sqrt{\theta})-J_{a+\frac{1}{2}}(2 \sqrt{\theta}) J_{b-\frac{1}{2}}(2 \sqrt{\theta})}{a-b}
$$

where $J_{\alpha}(z)=\sum_{p \geq 0} \frac{(-1)^{p}}{p!\Gamma(p+\alpha+1)}\left(\frac{z}{2}\right)^{2 p}$ is known as a Bessel function.

Interesting limits of the kernel

Lemma

Fix $\alpha \in[-2 ; 2]$.

$$
\lim _{\theta \rightarrow+\infty} K_{\theta}(\alpha \sqrt{\theta}+a, \alpha \sqrt{\theta}+b) \rightarrow \frac{\sin \left(\cos ^{-1}\left(\frac{\alpha}{2}\right) \cdot k\right)}{\pi k}
$$

Consequence : around position $\alpha \sqrt{\theta}$, the random set $D(\lambda)$ looks like a DPP, called the sine kernel.

For $\alpha=2$, the limiting kernel is 0 , which means that descending steps have become rare.
We need another rescaling.

Interesting limits of the kernel

Lemma

Fix $\alpha \in[-2 ; 2]$.

$$
\lim _{\theta \rightarrow+\infty} K_{\theta}\left(2 \sqrt{\theta}+\theta^{1 / 6} a, 2 \sqrt{\theta}+\theta^{1 / 6} b\right) \rightarrow A(a, b)
$$

for some function A, called Airy kernel.
Hence around the edge $x=2 \sqrt{\theta}$, after rescaling, the random set $D(\lambda)$ looks like another DPP, called the Airy kernel.
\rightarrow This lemma is a key step in the proof that the longest increasing subsequence in a random permutation has Tracy-Widom fluctuations.

Poissonized tableaux...

A Poissonized tableau T of shape λ is a filling of λ with numbers in $[0,1]$, with increasing rows and columns. We encode it as

$$
M_{T}:=\{(x(\square), T(\square)), \square \in \lambda\},
$$

which is a subset in $\mathbb{Z} \times[0,1]$

A Poissonized Young tableau T and the associated set M_{T}.

.. are determinantal point processes

Theorem (Gorin, Rahman, '19)
Fix a diagram λ and let T be a uniform random Poissonized tableau of shape λ. Then the associated random subset M_{T} is determinantal with kernel

$$
\begin{aligned}
& K_{\lambda}\left(\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right)\right)=\mathbf{1}_{x_{1}>x_{2}, t_{1}<t_{2}} \frac{\left(t_{1}-t_{2}\right)^{x_{1}-x_{2}-1}}{\left(x_{1}-x_{2}-1\right)!} \\
& \quad-\frac{1}{(2 \mathrm{i} \pi)^{2}} \oint_{\gamma_{2}} \oint_{\gamma_{w}} \frac{F_{\lambda}\left(x_{2}+z\right)}{F_{\lambda}\left(x_{1}-1+w\right)} \frac{\Gamma(w)}{\Gamma(z+1)} \frac{\left(1-t_{2}\right)^{z}\left(1-t_{1}\right)^{-w}}{z-w+x_{2}-x_{1}+1} d w d z,
\end{aligned}
$$

where

$$
F_{\lambda}(u):=\Gamma(u+1) \prod_{i=1}^{\infty} \frac{u+i}{u-\lambda_{i}+i},
$$

and γ_{w} and γ_{z} are well-chosen integration paths.

Some consequences

- local limits of staircase tableaux near the outer-diagonal (Gorin-Rahman '19, motivated by the study of random sorting networks);
- local limits of multi-rectangular tableaux near a point in the bulk (work in progress with J. Borga, C. Boutillier and P.-L. Méliot).

