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Exercise 1. Consider Gelfand mesure on partitions of n, defined by PG(λ) = dim(λ)/Z, where Z is
the number of involutions of n. What is the limit shape of λ, as n tends to +∞?

Exercise 2. Let SP(n) be the set of set partitions of [n] and take q > 1. Set partitions are seen as set
of arcs (i, j), where i and j are consecutive elements in the same block. We let d(π) be the number of
arcs, crs(π) be the number of crossings and dim(π) =

∑
(i,j) arc of π(j − i) be the sum of the length of

the arcs.
We define a superPlancherel probability measure on SP(n) by the formula

SPln(π) =
1

q
n(n−1)

2

(q − 1)d(π) · q2 dim(π)−d(π)

qcrs(π)
.

We refer to [DS18] for the proof that SPln is a probability measure and for its representation-theoretical
significance.
Finally, with a set-partition π in SP(n), we associate a measure

µπ =
1

n

∑
(i,j) arc of π

δ(i/n,j/n).

This is a measure of total weight at most 1 on the triangle ∆ := {(x, y) : 0 ≤ x ≤ y ≤ 1}.

(a) Write SPln(π) = exp
(
− n2 log(q)I(µπ) +O(n)

)
for some appropriate functional I.

(b) Find the maximizer of I on the set of measure on ∆ satisfying: for all a ≤ b in [0, 1]

µ([a, b]× [0, 1]) ≤ b− a and µ([0, 1]× [a, b])

(c) Deduce a law of large numbers for (the measure associated to) a random set partition with law
SPln.

Exercise 3. (a) Let Tn be a uniform random tableau of size n (the shape of T is not fixed). Fix
k ≥ 1 and a tableau U of shape µ of size k. Show that

lim
n→+∞

P
(
Tn/[k] = U) =

dim(U)

k!
, (1)

where Tn/[k] is the restriction of the tableau TN to the boxes containing entries less or equal to
k.
Hint: by RSK algorithm, Tn can be construct as the recording tableau of a uniform random
involution in Sn. We shall admit that a uniform random involution has o(n) fixed points with
high probability.

(b) (Needs basic knowledge of representation theory) Let µ ⊆ λ be Young diagrams. Denoting fλ/µ

the number of Young tableaux of skew shape λ/µ, prove that

fλ/µ =
1

|µ|!
∑
σ∈Sk

χλ(σ)χµ(σ).

Let λn be a sequence of A-balanced shape (i.e. max(λ1, ℓ(λ) ≤ A
√
n) for some A. Prove an

analogue of (1), where Tn is a uniform tableau of shape λn (as above, the tableau U and its
shape µ are however fixed).
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(c) As above, let λn be a sequence of A-balanced shape, and Tn a uniform random tableau of shape
λn. Let k = kn tends to +∞, with k ≪ n. Show that the shape of the truncation Tn/[k] tends
to the Logan–Shepp–Vershik–Kerov limit shape Ω.

Exercise 4. We consider the following element of the symmetric group algebra C[Sn]:

C(2) :=
∑
i<j

(i, j).

We recall that, since C(2) is central, for any irreductible representation Vλ, we have

ρλ(C(2)) = Xλ IdVλ
, where Xλ :=

χλ(C(2))

χλ(1)
.

Fix r even.

(a) Show that EPln [X
r
λ] is, up to a normalization factor, the number of factorizations of the identity

as a product of r transpositions.

(b) Admitting that most such factorizations are obtained by taking r/2 disjoint factorizations, re-
peating each twice, and shuffling the output, find an asymptotic equivalent for EPln [X

r
λ].

(c) Deduce a limit theorem (convergence in distribution after normalization) for Xλ and for R3(λ),
when λ is distributed with Plancherel measure of size n.
(We recall that if a sequence Yn of r.v. satisfies that, for each r, E[Y r

n ] → (2r − 1)!!, then Yn
converges in distribution to a standard Gaussian variable.)

Exercise 5. The goal of the exercise is to re-discover the formula for the Logan–Shepp–Vershik–Kerov
limit shape Ω, starting from the values of its free cumulants Rk(Ω) = δk,2. For this we recall a few
formulae:

• The compositional of the Cauchy transform G(z) of a diagram is K(u) = u−1 +
∑

k Rku
k−1.

• G(z) is related to ω by

log(z G(z)) = −1

2

∫
R

ω′(u)− sg(u)

z − u
du.

• Finally we have Stieltjes inversion formula: if Sρ(z) =
∫
R

ρ(u)du
z−u , with ρ continuous, then

ρ(x) = lim
ε→0+

Sρ(x− iε)− Sρ(x+ iε)

2π i
.

Bibliographic note: Exercice 1 is based on [Mél11], where the second order asymptotics is also
discussed. Exercise 2 is based on [DS18], Question 3.1 on [MMW02]. For Question 3.2, see [Sta03,
DF19]. Exercise 4 is a particular case of a result of Hora [Hor98] and Kerov (written in details by
Ivanov and Olshanski [IO02]), separately. Regarding exercise 5: a more involved computation to
recover a formula for a limit shape, starting from the value of cumulants can be found in [Bia01].
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