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Abstract

Random combinatorial structures form an active field of research at the interface be-
tween combinatorics and probability theory. From a theoretical point of view, some of the
main objectives are to develop general methods to find limiting distributions of functionals
on random objects, and to understand universality classes of their scaling limits.

This habilitation thesis reports on three series of papers fitting in this general effort. In
the first part, we study models of random Young diagrams arising from representation and
symmetric function theories. In the second part, we develop the theory of dependency
graphs, used to prove asymptotic normality of some functionals, mainly of substructure
counts in random combinatorial objects. In the last part, we present a new universal scaling

limit for pattern-avoiding permutations, the Brownian separable permuton.

Résumé

L'étude de structures combinatoires aléatoires est un domaine de recherche actif a
I'interface entre la combinatoire et les probabilités. D’'un point de vue théorique, parmi
les objectifs principaux se trouvent le développement de méthodes générales pour trouver
des distributions limites de fonctionnelles sur des objets aléatoires, etla compréhension des
classes d'universalité des limites d’échelle.

Cette habilitation présente trois séries d’articles contribuant a ces objectifs généraux.
Dans la premiére partie, nous étudions des modeles de diagrammes de Young aléatoires
venant de la théorie des représentations et de celle des fonctions symétriques. Dans la deux-
ieme partie, nous développons la théorie des graphes de dépendance, qui permet de prou-
ver la normalité asymptotique de certaines fonctionnelles, en particulier des nombres de
sous-structures d'un type donné dans des objets combinatoires aléatoires. Dans la derniere
partie, nous présentons un nouvel objet limit universel pour des permutations évitant des

motifs, appelé permuton séparable Brownien.
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CHAPTER 1

Introduction

The analysis of large random combinatorial structures is an active field of research at
the interface between probability theory and combinatorics, sometimes referred to as dis-
crete probability theory. Arguably, its most developed facet is the analysis of random graphs,
as testified by the many books on the subject [JLR00, Kol99, Spe01, Bol01, Pen03a, Mar04,
Durl10, FK16, vdH17, Chal7, CAR17]. Yet, many other types of combinatorial objects have
attracted the attention of the community, in particular trees, permutations, simplicial com-
plexes, Young diagrams, ... We start by giving a few general motivations for the study of

random combinatorial structures.

Statistics In many statistical problems, data is collected under the form of a combinatorial
object oy 0f size n (or a sample of such objects): graphs of interactions, permutations
of the ranks in a competition compared to initial ranks, ... With this data in hand, we
want to perform some statistical test, in particular to test the hypothesis that the data
is a sample from a given distribution uy, (e.g. the uniform distribution on objects of
size n). To perform such a test, one chooses a functional f on the corresponding set
of combinatorial objects and one compares f(0.}s) to the distribution of f(0) where o
has distribution ug,. In practice, we often use a large n approximation for the distribu-
tion of f(0). An illustration of this is given in [Muk16, Section 3]: the author analyses
the draft lottery data used to determine the order of enrolment of civils in the US army
in the '70s and rejects the hypothesis that this data was generated as a uniform ran-

dom permutation.

From a theoretical point of view, this assumes that we are able to find a limiting dis-
tribution for a well-normalized version of f(0), and many tools have been developed

for such problems.

Analysis of algorithm A basic question in complexity analysis is the following: given a pro-
gram taking some combinatorial structures as input, we want to find, for each 7, the
maximal amount of operations performed by the program on an object of size n (worst
case analysis). This problem does not involve any random combinatorial structures,
but there are two interesting variants that do. The first one is the average case analysis.
Here we fix a probability distribution on objects of size n and we want to compute the

mean number of operations performed by the program on a random object of size n.



The second variant regards randomized algorithms. In this case, the randomness lies

in the execution of the program itself.

For both of these variants, some complexity questions boil down to the analysis of
functionals on random combinatorial structures; examples can be found in the book
[FS15]. There is nowadays a large community working on this type of problems, as

testified in particular by the annual AofA (Analysis of Algorithms) meetings.

Statistical mechanics The principle of statistical mechanics is to modelize a macroscopic
system by taking at random a microscopic configuration among all those correspond-
ing to the system. In some cases, these microscopic configurations are combinatorial
objects, e.g. matchings in dimer models, integer partitions in TASEP (totally asymmet-
ric exclusion models), alternating sign matrices in 6-vertex models, ... The probability
distribution used is most of the time either uniform or exponentially biased according
to some energy function. The goal is to analyze some macroscopic quantity of the sys-
tem, i.e. some functional f, when the size of the system/of the combinatorial object
tends to infinity.

This gives three different general motivations to study large random combinatorial ob-
jects. Building on that, discrete probability theory has become a field of research in itself
with an interest in developing general methods for problems not necessarily guided by such
applications. My work lies at this theoretical level.

We now discuss a selection of concepts in the theory of random combinatorial struc-
tures. This selection is clearly biased towards my own work. The goal is to put the main

Chapters (2 to 4) of this habilitation thesis in context.

1.1 General methods for finding limiting laws

In this section, ¥ is a family of combinatorial objects and f a function of interest on
€. For each n, we let 0, be a random object of size n in €. As motivated above, a cen-
tral question about random combinatorial structures is to find a limiting distribution for
X, = f(0y), possibly after normalization. Beyond basic counting arguments, various meth-

ods have been developed for this. We cite three of them:

Analytic methods We consider the bivariate generating series, either ordinary or exponen-

tial, defined as

lo|
z
Clz,t):= ) 21910 o1 C(z, 1) := Y —'tf("),
0€E 0€E |0| :
where |o| is the size of the object 0. In good cases, using some recursive structure of

the class ¢ and the functional f, one can compute or write some equations for the
generating series C(z,f). A limit law for f(0,), where 0, is a random object of size
n, can then be derived by doing some suitable asymptotic analysis of C(z, ). Some
results of this habilitation thesis, in particular Theorem 4.2 on random permutations,

have been obtained through such techniques.
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Moment method Another approach considers the moments E[f(0,)"] of our random vari-
able X, = f(0,). A classical result in probability theory states that if the moments of
a sequence X, of random variables converge to that of a limiting distribution p and if
the limiting distribution u is determined by its moments, then X, converges in distri-
bution to u. This is usually refered to as the moment method. It is particularly useful in
discrete probability theory: indeed when f(0,) counts some substructures of o, (pos-
sibly with weights), then it writes as a sum of indicator functions (or weight functions),

and one can expand f(0,)" to compute the expectation.

I have been using the moment method in several of my works, e.g. for Theorem 2.10
on random Young diagrams. The theory of dependency graphs, to which I contributed

(see Section 1.2 and Chapter 3), also relies on the moment method.

Stein’s method Another method to prove convergence in distribution is the so-called Stein’s
method. The development and applications of Stein’s method has been an active field

of research since its introduction by Stein in the early '70s; see [Ros11] for a survey.

Roughly, the principle is the following. First, one finds a functional equation char-
acterizing the limiting distribution. For example, it can be shown that a real-
valued random variable Z follows a standard Gaussian distribution if and only if
Elg'(Z)] =E[Zg(Z)] for all compactly supported continuous function g. Note that this
step does not depend on the model that we are studying, only on the limiting distribu-
tion; thus for classical limiting distributions (Poisson or Gaussian laws in particular),

such characterizations are now well-known.

The second step is to prove that X, = f(0,) “satistifes approximately” this functional
equation; such an approximate equation implies that X;,, converges to Z in distribu-
tion, and, additionally, provides a control on the error term in this convergence. We
refer to Theorem 2.12 for an example of application from our own work, regarding
random Young diagrams.

1.2 Dependency graphs

Among the various techniques developed to apply the moment method or Stein’s
method, there is one of particular interest for this thesis: dependency graphs. Roughly, the
principle is the following. We are interested in proving the asymptotic normality (i.e. the
convergence to a Gaussian distribution after normalization) of a statistics of the form
X, = XY aea Yo, substructure counts typically are of this form, where the Y, are indicator
functions. If the Y, were i.i.d., asymptotic normality would follow from the classical central
limit theorem (for triangular arrays). We would like to relax the independence hypothesis,
assuming only that “some” of the variables Y, are independent. The idea is to encode this
information in a graph with vertex set {Y,, @ € A}, putting edges between pairs of dependent
variables; this is called a dependency graph for the family {Y,, a € A}. If this graph is suffi-
ciently sparse, then we are close to the case of a sum of independent variables, and we might

11



expect asymptotic normality. In this spirit, Janson [Jan88] has given a concrete criterion for
asymptotic normality using dependency graphs; this criterion has found since then various
applications (see Section 3.1 below).

In this thesis, we extend Janson’s result in two directions. First, in some cases, we give
probabilistic estimates complementing asymptotic normality: control on the speed of con-
vergence, moderate deviation estimates, concentration inequalities. Second, we define a
notion of weighted dependency graphs, allowing to apply Janson’s technique with weakly
dependent random variables. This significantly enlarges its range of applications. These

results are presented in Chapter 3 of the thesis.

1.3 From algebraic combinatorics to discrete probability theory

Connections between algebra and combinatorics are manyfold and form a research field
called algebraic combinatorics. Standard objects of interest are for examples group repre-
sentations, symmetric functions, and so on. Over the years, many concepts from this field
have proved useful to solve problems in discrete probability theory.

A famous example of this kind concerns the length LIS(o,,) of the longest increasing
subsequence in a uniform random permutation o, of size n. The question of finding its
asymptotic behaviour was raised by Ulam in [Ula61]. Hammersley [Ham72] proved, through
probabilistic methods, that LIS(e ,,)/+/n converges to a constant c in probability, but could
not determine the value of the constant.

To go further, a more algebraic point of view is useful. The length of the longest increas-
ing subsequence of a permutation is the length of the first row of the so-called Robinson-
Schensted shape of the permutations. We recall that Robinson-Schensted bijection maps
permutations to pairs of Young tableaux of the same shape and was originally introduced
to explain combinatorially an identity coming from representation theory of symmetric
groups, see e.g. [Sag01]. It turns out that the Robinson-Schensted shape of a uniform ran-
dom permutation is a random Young diagram with the so-called Plancherel distribution.
This distribution has an explicit product formula - the hook formula — making its analy-
sis tractable. This approach was used independently by Vershik—-Kerov [KV77] and Logan—
Shepp [LS77], to find a limit shape for Plancherel distributed Young diagrams, implying that
Hammersley’s constant c is equal to 2. This first-order convergence result for LIS(o ;) was
later refined to a fluctuation result, using again the connection with Plancherel distribu-
tion [BDJ99].

This seminal series of work has been extended in many directions. In particular, Ok-
ounkov defined some generalization of (Poissonized) Plancherel measures on Young di-
agrams, called Schur processes, that can be analyzed using symmetric function theory
[OR03]. These were further generalized to Macdonald processes [BC14]; interestingly, par-
ticular cases of these processes are connected to natural statistical physics models: g-TASEP,
directed polymers, ...

In this habilitation thesis, we will discuss some deformations of the Plancherel measure

12



arising from representation theory of Hecke algebras on the one side, and from the theory
of Jack symmetric functions on the other side. In both cases, we provide a strong limit shape
result and a weak fluctuation result (here, “weak” and “strong” should be understood in the
topological sense, i.e. weak means that we describe the fluctuations of a natural family of
functionals on these diagrams, while a strong result is a convergence result for the diagram
itself). We emphasize that the algebraic structure behind each model is central to compute
moments of the relevant random variables. These results are the topic of Chapter 2 of the

thesis.

1.4 Scaling limits and universality

In addition to finding the limit of a functional f(0,) of a random combinatorial object
0,, there has been an increasing interest in the community in finding a limit for the object
o0, itself. When finding the limit involves to renormalize “distances” in the object in some
sense, we speak of scaling limit. The limit shape results for random diagrams mentioned in
the previous section are examples of scaling limit results. In another direction, scaling limits
for random trees, random graphs and random maps have been an active area of research in
the last thirty years; see e.g. [Ald93, Miel3, LG13, HS20].

An advantage of looking at scaling limit results rather than studying a functional is that
it makes more apparent what we call universality phenomena. Namely, it turns out that
various models, e.g. of trees and maps, share the same scaling limit. For example, large con-
ditioned Galton-Watson trees converge to the so-called Brownian Continuum Random Tree
as soon as the offspring distribution is critical with a finite second moment [Ald93, LGO05].
A more recent, long awaited, result of this type involves random planar maps: many natu-
ral models (with fixed face degree, or with the so-called Boltzmann distributions) converge
under mild conditions to the Brownian map [Miel3,LG13, Mar18].

In the last chapter of this thesis (Chapter 4), we initiate a parallel line of study on ran-
dom permutations. A notion of scaling limits for permutations was recently introduced
in [HKM*13]. Independently, a growing interest in analyzing random pattern-avoiding per-
mutations has emerged in the combinatorics community, following initial works of Madras—
Liu [ML10] and Miner-Pak [MP14]. However, before our work, scaling limit results for such
models of random permutations were quite sparse. We have provided such results for a large
family of pattern-avoiding permutation models, revealing some universality phenomenon

in the spirit of the above-mentioned literature for trees and maps.

1.5 Outline of the thesis and other works of the author

The remaining chapters of this thesis aim at presenting the main contributions of the
author in the field of random combinatorial structures. Namely, Chapter 2 gives results on
random partitions, Chapter 3 on dependency graphs and Chapter 4 on scaling limits for

random pattern-avoiding permutations. To emphasize the author’s contributions, results

13



obtained in papers that I co-signed are in blue frames, while earlier results are in green.
To preserve a unity in the presentation and keep this document concise, we could obvi-
ously not present all the results obtained by the author after his PhD thesis. To fill this gap

at the minimum, let us list here some topics not covered in this manuscript:

e algebraic and geometric perspectives on linear extensions of posets [BF09, BFLR12,
FR12,AFNT15, Fér15], hook formulas for weighted counts of linear extensions of trees
[FG13,FGL14], and asymptotic enumeration of tableaux [DF19a];

e the “dual combinatorics” of Jack polynomials [FS11,DF14,DF17,AF17];

e enumeration of permutation factorizations [FV12,FR15] (including functions of Jucys-
Murphy elements [Férl12a, Fér12b] and analysis of related map models [CFF13]) and,
more recently, their probabilistic analysis [FK18, FK19, FLT21];

¢ the theory of mod-¢ convergence [FMN16, FMN19, FMN20] and an asymptotic nor-
mality result for uniform random elements in Coxeter groups [Fér20b];

* and a formal logic approach to permutations [ABF20].
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CHAPTER 2

Algebraic models of random partitions

A partition (or integer partition) is a non-increasing list (1y,---,A,) of positive integers.
Partitions are classical objects in number theory and enumerative and algebraic combina-
torics; in particular, they index various bases of the symmetric function ring and the irre-
ducible representations of symmetric and general linear groups [Mac95]. Partitions can be
represented by geometric objects called Young diagrams. This geometric realization is cru-
cial in asymptotic questions.

The study of random partitions (under various probability distributions) is a rich area,
connected to representation theory, statistical physics, random matrix theory and enumer-
ative geometry; we refer the reader to the surveys of Vershik [Ver95] and Okounkov [Oko05]
for a presentation of these links.

In the following, we focus on models of random partitions arising from representation
theory of the symmetric groups and deformations or analogues. In Section 2.1, we analyze
the standard Plancherel measure of the symmetric group, focusing on Kerov’s central limit
theorem for Young diagrams. We then discuss two variations of the latter, related to Hecke
algebras and Jack symmetric functions (Sections 2.2 and 2.3); this is based on works in col-
laboration with P-L. Méliot and M. Dotega, respectively [FM12, DF16].

2.1 Plancherel measure and polynomial functions on Young

diagrams

2.1.1 Definition and background

As a start, let us recall that it is customary to represent a partition A = (1;,...1¢) by a
Young diagram: it consists in left-aligned rows of boxes with respectively 1;, 1, ...and A,
boxes. The size of the partition is the number of boxes in the diagram, i.e. A; +---+ A,. For
example, the Young diagram on Figure 2.1 (left) represents the partition (7,4, 3,3,2). From
now on, we speak interchangeably of partitions and Young diagrams.

Irreducible representations of the symmetric group G, are indexed by partitions, or
equivalently Young diagrams, of size n. For an accessible introduction to the topic, see
[Sag01]. We denote by dim(A) the dimension of the irreducible representation indexed by

A. It is well-known that this is also the number of standard tableaux of shape A, but we shall
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FIGURE 2.1 (Left) The Young diagram of the partition (7,4,3,3,2). (Right) A Plancherel-distributed
random Young diagram of size 500.

not use this combinatorial description here.

Definition 2.1

The Plancherel measure for G,, (or Plancherel measure for short) is the probability

measure Ppj on the set of partitions of n such that for any partition A of n, we have

Ppi(A) = 4 (dim(A)%. .1

The fact that (2.1) indeed defines a probability measure is an elementary result of repre-
sentation theory of finite groups (Plancherel measures can be defined for all finite groups,
not only for symmetric groups).

We now review (in a biased way) the literature on random Plancherel-distributed Young
diagrams. The Plancherel measure has its origins in representation theory, but the special
case of symmetric groups was popularized by its link with the so-called Ulam-Hammersley
problem [Ula61, Ham72, Rom15]: what is the asymptotic behaviour of the length LIS(o )
of the longest increasing subsequence in a random permutation o, of size n? As a con-
sequence of Robinson-Shensted correspondence, the quantity LIS(a ;) is distributed as the
length A, of the first row of a diagram A of size n distributed with Plancherel measure. A
more recent motivation to study the Plancherel measure is its link to random matrix theory,
for example through the appearance of the discrete sine process in the bulk and the Airy
ensemble at the edge of the diagrams, see [BOOO00, Joh01, Oko05].

Figure 2.1 (right) shows a Young diagram of size 500, taken at random with Plancherel
measure. On the picture, it seems that the boundary of the diagram approaches a contin-
uous curve. This fact was formalized and proved independently by Vershik-Kerov [VK77]
and Logan-Shepp [LS77], providing the equation of this limiting curve. Twenty-five years
later, Kerov announced a central limit theorem for Plancherel distributed Young diagrams
[Ker93b]. The complete proof of this central limit theorem was given by Ivanov and Ol-
shanski [I002], based on Kerov’s unpublished notes. It uses a new approach, based on the
concept of polynomial functions on Young diagrams introduced by Kerov and Olshanski

in [KO94] — this new approach also provides an independent proof of the limit shape result.
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We also mention the work of Hora [Hor98], who computed independently limiting moments
of normalized character values, when the representation is indexed by a Plancherel random
Young diagram; see Section 2.1.2.2 below.

In this section, we present the basic ideas of Kerov’s approach, which has served as basis
for our own work on variations of Plancherel measures. Most results are taken from [1002],

the presentation is however rather different.

2.1.2 Limit results for character values

2.1.2.1 An algebraic family of observables

Kerov’s approach starts with the following observation: the algebraic definition of Py,
via dimension of irreducible representations of G, gives us a natural family of well-behaved
observables (i.e. random variables). These observables are the normalized irreducible char-
acter values of the symmetric group.

Let us be more specific. For a partition A of size n, we denote p” the irreducible repre-
sentation indexed by A; by definition of the notion of group representation, p* maps per-
mutations o in &, to invertible endomorphisms p” (o) of some vector space V. Then the
character y*(o) is defined as the trace of the endomorphism p*(o). As said above, we let
dim(A) be the dimension of the underlying vector space V. Since group representations are
by definition group morphisms, conjugate elements of S,, are mapped to conjugate endo-
morphisms which have the same trace. In other terms, (o) only depends on the conjugacy
class of o, which is determined by its cycle type!.

The character is usually seen as a function on &, (the partition A being fixed), but it will
be convenient to reverse the point of view here and define, for a fixed permutation o,
A

dim(A)
As discussed above the function y, only depends on the cycle-type p of o, so that we use the

XoA)

g

(2.2)

notation §,, := ¥,,. Finding nice/suitable expression for } , (as a function of 1) is sometimes
referred to as the dual approach to representation theory of the symmetric groups; see [Snil2,
Fér16].

Fix a partition p of n. If A is taken at random, e.g. with the Plancherel measure, then
Xu = Xu(A) is a random variable. We consider, for a start, its expectation: from Egs. (2.1)
and (2.2), we get

Enliy) = 2 Prd) §,(0) = 5; 3 dim() 10 = L (). (233)

Here, the sums in the intermediate expressions run over partitions of n, o is an arbitrary
permutation of cycle-type u and y™8 is the character of the regular representation? p™8 of

Sy In the case u = (1"), the function f ;) is identically equal to 1, so that its expectation is

IThe cycle-type of a permutation o is the integer partition obtained by taking in decreasing order the length
of the cycles of 0.

2The (left-)regular representation of a group G has a basis (8 g)geG and an element & in G acts on the basis
by sending 6 on 6.
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trivially 1. For other partitions y, the corresponding permutation o is not the identity and

0"™8(0) permutes the basis elements of the regular representation, letting no basis element

fixed; hence its trace y"°® is equal to 0. To sum up, we get the following lemma.

For any partition u of n different from (1), we have Epj[¥ u] =0.

2.1.2.2 Higher moments

We now discuss joint moments of the variables (¥,,) u+-n, i.e. we fix n and arbitrary parti-
tions u',..., u"™ of n and we want to compute Epi[ ¥, -+ §,m |. Using Lemma 2.2 and
the identity Epj[ ¥;» | = 1, this expectation is the coefficient of j ;. in the expansion of
Xy -+ Xyom on the basis® (¥,):-n. Using representation theory, we will see that this coef-
ficient has a combinatorial meaning.

In the following, we denote by o, an arbitrary permutation in &, of cycle-type u and
by €, the set of all permutations &,, of cycle-type p. By abuse of notation, 6}, will also
represent the formal sum of the permutations that it contains. This is an element of the
group algebra C[S ], and more precisely of its center Z(C[S,]).

In general, with an element x in Z(C[G,]), we can associate a function
A — tr[p*(x)]/ dim(A) on the set %, of Young diagrams of size n. Basic representation
theory arguments show that this is an algebra isomorphism* from Z(C[&,,]) to the space
F (%,,C) of complex valued functions on %, (endowed with the point-wise product). Using

the conjugacy-invariance of characters, we have

5 ~ tr(pfl(au))_ 1 A
2 =16l ) ‘dimm)tr[p ()]

i.e. 6, is mapped to |6,,| ¥, by the above algebra isomorphism.

Consequently, the problem of expanding ¥, ¥, over the basis ({,):+n is reduced to the
problem of expanding 6,6, over the basis (6;);,. The latter is a combinatorial problem:
the coefficient of €; in 6,6 is the number of ways in which any fixed permutation of type

7 can be written as a product of a permutation of type p and a permutation of type v.

1€, -1€,m! . )
— = Xuo - o s the number of ways
T

More generally, the coefficient of y, in
in which a fixed permutation of type 7 can be written as a product of permutations oy, ...,
o of cycle type uV, ..., u"”, respectively. Taking the expectation, and using Lemma 2.2, we

get:

3The family (§,) 7+, is a basis of the space of functions on Young diagrams of size n.

“We note that the map is naturally extended to the whole symmetric group algebra C[&,] with the same
formula (i.e. x in C[&,] is mapped to the function A — tr[pﬂ(x)]/dim(it)) ; this extension is however not an
algebra morphism anymore.
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Proposition 2.3

For partitions uV,..., u" of n, the quantity
|c€u(ll|"'|ng(m)|[EPl[7Zp(1> )V('u(rm]

is the number of factorizations o - - - 0, of the identity as a product of permutations

Ol,...,O0m ofcycletypeu(l),...,u

(M) respectively.

2.1.2.3 Asymptotic normality of character values

There is no closed general formula® to count the factorizations in the statement of
Proposition 2.3, but some asymptotics will be enough for us. We now fix some integer
k = 2 and continue the discussion in the special case where ,u(l) =-... = ,u(m) = (k, 1"
with n large. In other terms, we are looking at the moments of the sequence of variables
)ZEZ% = X(g1n-k) (for n< k).

We use the standard “falling factorial” notation (n); = n(n—1)--- (n—k+1). Using Propo-

sition 2.3 and the easy formula |6 kyln—k)l = (n)/ k, we have that
(mi\™ [l ym
(T) IEPI[(X(’]Z)) ]
is the number of m-tuples (07y,...,0,) of k-cycles such that o, --- 0, = id,;; below, we call

such m-tuples (o4, ...,0,,) valid m-tuples. When m is even, there is a simple way to con-

struct valid m-tuples (but not all of them!).

e First choose a matching of the set {1,...,m}, i.e. a collection of pairs {i, i},
... {im/2, jms2} whose disjoint union is {1, ..., m}; we use the convention i; < j; in each
pair, and matchings differing only by the order of the blocks are considered equal.
There are (m — 1)!! such matchings®.

e Next, we choose k-cycles 0;,,-+,0;, , with disjoint supports. There are (1) g2/ k™'
choices at this step.

* Finally, we set o, = ai‘tl (no choices at this step).

The construction ensures that the product o --- 0, is the identity: factors of different
pairs commute with each other (since they have disjoint support) while factors of the
same pair are inverse one of the other and cancel out. Hence we have constructed
(m =D gms2! K™? valid m-tuples (o1, ...,0m).

Exhibiting these valid m-tuples is rather easy, but we recall that these are not all valid m-
tuples. However, one can prove (see [Hor98, Section 3.1]) that there are at most O (nkm-1/2)
valid m-tuples which are not of the form above. In particular, for m odd, there are at most
O (nkm-1/2) yalid m-tuples in total. We finally get

(mMr\" < (n]ym mi2 (km—1)/2
T [EPI[(X(]C)) ] =0 meven (M— 1)!!(n)km/2/k +@’(I’l )

SThe most general result of this kind of which the author is aware covers the case where one of the partition
is the one-part partition (n); see [PS02].
6We recall the standard double factorial notation (2r — )!!'=1-3---(2r —1).
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This shows that the moments of n*/? )ZEZ% /Vk, or equivalently’ of
nk/2 tr[pl((l,...,k))]/(\/E dim(A)), tends to O0,;even (M — 1)!I.  The latter are well-known
to be the moments of the standard Gaussian distribution; therefore by the method of mo-

ments, we get the following theorem, originally found by Kerov [Ker93a] and Hora [Hor98].

Theorem 2.4: Central limit theorems for characters

Let A be a Plancherel-distributed Young diagram of size n. Fix k = 2. The random
variable n*"2tr[p?((1,---, k))]/(v/k dim(A)) tends in distribution and in moments to a

standard Gaussian random variable.

Furthermore, a finer analysis shows that, for any K = 2, the variables
(n*2tr[pr((1, -+, k)1/(Vk dim(A)))2<k<x converge jointly to independent Gaussian
random variables.

One can also study moments of normalized characters tr[p*(c)]/ dim(1), when ¢ is any
fixed permutation of Sy (we treated above only the case of cycles). The combinatorics is
more subtle and in general, the limits no longer correspond to the moments of Gaussian
variables, but to that of polynomials in Gaussian variables; see Hora’s paper [Hor98]. This
prevents from deducing convergence in distribution from moment convergence, since some
polynomials in Gaussian variables are not determined by their moments (see [Slu93], where
explicit criteria under which such polynomials are or are not determined by their moments

are given). We will see a way around this problem in the next section.

2.1.2.4 Polynomial functions on Young diagrams |

Given a partition u = (ug,---, it¢) of size k and an integer n, we consider the following

element of the center of symmetric group algebra C[G,,]:

Cl[J,I’l = Z(aly'“ ’aﬂl) (au1+ly---)a/.12) e (au1+...+p[_1+1)“' !ak))

where the sum runs over k-tuples (ay,---, ai) of distinct integers between 1 and n. If k > n,
the sum is empty, and thus Cly;, = 0; otherwise it is a nonzero multiple of €, ,;»-x). The
notation C/ stands for class, since these are multiples of conjugacy class sums. The inter-
est of this normalization of conjugacy class sums lies in the following property: there exist

coefficients g, ,, independent of n such that, for all partitions y and v and all n, we have
Clﬂ;nClv;n = Zg;,v(:l‘r;ny (2.4)
T

where the sum runs over partitions 7 of all sizes. This property is easily seen, splitting the
double sum defining Cl,;;,Cl,;, according to the equalities between indices in the first and

in the second sum. Details can be found, e.g., in [Bia03, Section 3].

Recall that with an element x in Z(C[S,]), we can associate a function
A — tr[p*(x)]/dim(1) on the set %, of Young diagrams of size n. Fix a partition .
For each n = 1, the element Cl,;, is mapped to a function on Young diagrams of size n,

"Here, we see the element (1,..., k) of &  as an element of the larger symmetric group &, (fixing all elements
larger than k); with this identification, it has cycle-type (k, 1"¥) as wanted.
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which we denote Chy;,. The whole sequence (Chy;;) =1 can be seen as a function Ch, on

the set % =| |9, of Young diagrams of all sizes. Explicitly we have

Chu () = IAAA=1) == (A = gl + D) ¥ o an-k) (D) 2.5
. 0if [l > IAl.
Moreover, Eq. (2.4) implies that
Ch,Cl,=) g, ,Chs, (2.6)
T

as functions on all Young diagrams (here, the independence of g, from 7 is key). More

precisely we have the following result, see [I002, Proposition 4.5], which is based on [IK99].

Proposition 2.5

The linear span Span(Chy; p partition) in & (%,%) is closed under multiplication.
Moreover, Ch,Chy, — Chyyy lies in Span(Chy; || < |ul + [v]).

The subalgebra of & (@ ,€ ) spanned by (Chy) 4 partition is called the algebra of polynomial
functions on Young diagrams; we denote it by A.har. Using the second part of the proposi-

tion and an easy triangularity argument, we can show that (Ch)) =1 is an algebraic basis of

Achar-

We now come back to Plancherel distributed Young diagrams. A function F on all Young
diagrams defines in this context a sequence of random variables X,, = F(A,), where A, is a
Plancherel distributed diagram of size n. Theorem 2.4 (and the comment below) implies the
joint convergence (after normalization) of Ch,, for k = 2, towards independent Gaussian
random variables. In principle, this allows to find the limit behaviour of any polynomial
combination of (Ch) k=1, i.e. of any element F of Acpgr (recall that Chy(A) = |A], so this
is a trivial deterministic quantity). In practice, it requires to find the expansion of F as a
polynomial in (Ch)) k=1, or at least to find the asymptotically dominant terms, which can
be difficult.

Nevertheless, this strategy can be used to find the limit behaviour of Chy, for any u:
see [I002, Theorem 6.5], which gives convergence of Ch, after renormalization in distribu-
tion and in moments, while the pure moment approach in the previous section only gives
moment convergence. We will also use the same strategy with other functionals in Agp,y in

the next section.

2.1.3 Limit results for Young diagrams

From an algebraic point of view, the functions }, are very natural observable of the di-
agram, so one can be perfectly satisfied by the description of their fluctuations. However,
from a more combinatorial perspective, this is unsatisfying: we do not have information
about the geometry of a large random Plancherel Young diagram. This is the topic of this

section.
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FIGURE 2.2 The Young diagram (7,4, 3,3,2) drawn with English, French and Russian conventions.

FIGURE 2.3 The outer border of a Young diagram drawn with Russian convention, is the graph of a
real-valued function on the real line.

2.1.3.1 Continual Young diagrams

To state a limit result for Young diagrams, we first need to embed these discrete objects
into a continuous space. To this end, it is better to use the Russian convention for draw-
ing Young diagrams. The way we have drawn Young diagrams so far (e.g. on Fig. 2.1) is
commonly refered to as the English convention. Performing a symmetry along a horizontal
axis yields the diagram drawn with French convention, and a further counterclockwise 45°
rotation gives the diagram drawn with Russian convention (see Fig. 2.2).

The advantage now is that the diagram can be described by its outer border. Extending
this outer border by diagonal straight lines gives the graph of a function from R to R (see
Fig. 2.3, taken from [DFS10]). We remark that this function is always 1-Lipschitz. We then
use standard notions of convergence of functions, in particular uniform convergence, to
give a rigorous meaning to the convergence of Young diagrams. More formally, following
Kerov, we define a continual Young diagram as a 1-Lipschitz function w from R to R such
that w(x) = |x| and w(x) = |x| for |x| large enough. Taking the upper boundary of a Young
diagram drawn with Russian convention gives an embedding of classical Young diagrams

into the set of continual Young diagrams.

2.1.3.2 Polynomial functions on Young diagrams Il

One way to analyze (sequences of) continual Young diagram is to look at their moments:

for k = 2, Kerov introduced the functional

Pr(w) = KED f (@(x) - |x)x*2dx.
R
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Note that since w(x)—|x| is compactly supported, the integral is finite®. As a first step towards
understanding the limiting behaviour of a sequence of continual Young diagrams w,, we
look at the limiting behaviour of pi(w,) (for a fixed k = 2).

It is not hard to see that, as functions on Young diagrams, the functions (p) =2 are alge-
braically independent. They generate an algebra, which we will denote by Ageom here. We

have the following remarkable result.

Proposition 2.6

We haVe Achar = Ageom.

We will not give a full proof of this proposition (the curious reader can look at Propo-
sitions 3.3 and 3.4 in [I002]), but we explain informally where it comes from. The key el-
ement is a formula to compute characters and relate them to the “geometry” of the dia-
gram. For this, Ivanov and Olshanski prove the following formula, originally due to Wasser-

mann [Was81]: for any diagram A,

1 k 0o '(Mtj )
Ch(k>(7t):[tk+1]{71'[1(1—(j—%)t)exp Zl—p] . (1—(1—kt)‘f))}, 2.7)
j= j=

where  [t**1]F is the coefficient of ¢**!' in the series F and
piA) =% i=1(Ai—i+ 1/2)) — (=i +1/2)/ (the sum is finite since A; =0for i large enough)g.

The functions p;(A) are different from the p(1) introduced above, but both encode
in some sense the shape of the diagram. One can prove by combinatorial arguments and
generating series manipulation that they generate the same subalgebra of functions on
Young diagrams Ageom. The above formula implies directly that Ch is in Ageom so that
Achar € Ageom-

A careful analysis of the highest term in (2.7) (for an appropriate gradation) shows that
(2.7) can be inverted (though not explicitly) and p; can be expressed in terms of the charac-

ters Chy. This concludes the proof that Achar = Ageom.

2.1.3.3 Law of large numbers for polynomial functions and for the rescaled Young

diagrams

We note that the above argument is constructive; it gives an expression of Chy,) in terms
of some generator p; of the algebra Ageom. For small values of j, we can invert it and get
expressions of p; in terms of Chy). The formulas relating p; to py, which we did not detail
above, are also effective. A subtle analysis of these formulas yields the asymptotically dom-
inant term of py, for all i, when expressed in terms of Chj,. Since we know the asymptotic

behaviour of the functions (Ch; k = 2) (Theorem 2.4), we can infer those of py,.

8The shift of index (the moment of order k—2 is denoted py) is justified by a homogeneity relation when
scaling continual diagrams in both directions, on which we will not expand here.

9To prove eq. (2.7), Ivanov and Olshanski start from an example in Macdonald’s book on symmetric func-
tion [Mac95, Chapter I, Section 7, Example 7] and perform simple analytic manipulation. The example in
Macdonald book itself comes from an application of the Murnaghan-Nakayama rule (no further representa-
tion theory is needed). Thus, this formula is in some sense a special case of Murnaghan-Nakayama rule in
disguise.
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]

FIGURE 2.4 The continual Young diagram Q (red curve).

This strategy was developed by Kerov and presented in full detail by Ivanov and Olshan-
ski in [I002]. We will not give all the details of the computation here and only state the main

results.

The first result us a first-order convergence result for pj(A,), where A,, is a Plancherel-
distributed random Young diagram of size n. Namely, we have the following convergence in
probability as n tends to +oo:

2m : .
if h =2mis even;
n ) — <" ) (2.8)
0 otherwise.
For a Young diagram A of size n, we denote A the continual Young diagram obtained by
rescaling the 2D picture by 1/+/n in both directions. One easily shows that, for any A - n, we
have p,,(A) = n=2p;,(1). With this, (2.8) reads as

)

m if h =2mis even;

0 otherwise.

Consider now the continual Young diagram, drawn on Fig 2.4, given by the equation

%(xarcsin(%) +Va-x?) iflx|<2;
Qlx) = (2.9)
| x| if |x| = 2.

A simple computation, via integration by part, yields

. (Zn'f) if h=2m s even;
Pr(€2) = (2.10)
0 otherwise.
In other terms, the moments of Q match the limiting moments'® of A,,. Using the regularity
of A,, and Q (both are 1-Lipschitz funcitons) and a small additional combinatorial argument
(showing that A, is with high probability supported on a fixed compact interval), we can
deduce from the moment convergence py(A,) — pr(Q) the uniform convergence of the

function A,,. Namely, the following result is Theorem 5.5 in [I002].

19Naturally, the formula (2.9) for Q was chosen so that these moments match. To guess the right formula for
Q based on (2.10), one can use the theory of Stieljes transforms; see [Wal48] for the general theory and [Bia01]
for an application to finding limit shapes of Young diagrams.
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Theorem 2.7: Law of large numbers for Plancherel measure

Let A, be a random Young diagram of size n, distributed with Plancherel measure.
Then the outer border of the rescaled Young diagram A,, tends to Q in probability in
the space of continuous functions from R to R endowed with the supremum norm.

2.1.3.4 Central limit theorem for polynomial functions

We now turn to the central limit theorem. Rather than giving the joint fluctuations
of (pn; h = 2), we perform a triangular change of basis so that the resulting functions are
asymptotically independent. Namely, let us consider Chebyshev polynomials u(x) of the
second kind!! defined by

Lk/2]

k-7 . in((k+1
up(x)= Y (-1 (kj ])xk_zf, or equivalently, (2 cos(x)) = M
j=0

sin(x)
Then we set
qn(\) :f 3 @(x) — | x)up(x)dx. (2.11)
R
Ivanov and Olshanski (following notes of Kerov) proved the following theorem [I002, Theo-

rem 7.1].

Theorem 2.8: Central limit theorem for Plancherel measure

Let A, be a Plancherel distributed Young diagram of size n. Then the vector of ran-
dom variables v/7(qy, (An) = Gn (Q)) (for h = 1) converges in distribution to a vector
(Zn/Vh+1)p>1, where Z,,7,,--- are independent standard Gaussian random vari-

ables.

This theorem can be informally interpreted as a Gaussian limit theorem for the function
A, (x)—|x| in a space of generalized functions (after centering and normalization); see [1002,
Section 9]. In this sense, it can be seen as a second-order asymptotic result, refining the law

of large numbers given in Theorem 2.7.

2.2 Hecke algebras and the g-Plancherel measure

This section reports on the article [FM12], written in collaboration with P-L. Méliot. The
main results are a law of large number and a central limit theorem for polynomial functions
on random Young diagrams distributed with the so-called g-Plancherel measure. We first
introduce this measure, present our results and then discuss briefly some elements of proof,

emphasizing differences with the usual Plancherel setting.

UThis is in fact a slight modification of Chebyshev polynomials. They are related to the usual Chebyshev
polynomials U (x) by Uy (x) = ui(2x).
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2.2.1 Background on the g-Plancherel measure

The g-Plancherel measure is a natural g-analog of the Plancherel measure, introduced
by Kerov in [Ker92]. The most direct way to define it is an explicit formula for the probabili-
ties of individual diagrams. Namely, we set

{n}4!
[Moeath@}y’
where b(1) = Y ;51(i — 1)A; is a standard quantity in symmetric function theory, h(lJ)

Da(q) = q"™

is the hook-length of the box U, {kl; = 1+g+---+ g*! the standard g-integer and

{nt4! = {1}412}4---{n}, is the g-factorial. Then, for each g > 0, we define a probability mea-
Dj(g) dimA
{n}q!

A F n. For q = 1, we recover the usual Plancherel measure on Young diagrams. Due to some

sure’? M, 4 on the set of Young diagrams of size n as follows: M, 4(1) = for any

symmetry between the cases g > 1 and g < 1, in the sequel, we assume g < 1.

Remarkably, this measure can also be constructed by a random walk on the Young graph
(i.e. the graph with vertices indexed by all partitions, and directed arrows representing the
addition of a single box). This was proved in the original article of Kerov [Ker92] using a g-
deformation of the hook walk algorithm of Greene, Nijenhuis, and Wilf [GNW82]. Moreover,
as in the usual g = 1 setting, the g-Plancherel measure for general g is also connected to
random permutations through Robinson-Schensted (RS) algorithm. To this end, we con-
sider a random permutation o of size n, such that for any 7, the probability of having 7 is
Plo = 7] = ¢™¥™ /{n},!, where maj() is the sum of the positions of the descents of 7, called
major index'® of 7. Then the shape A of the pair of tableaux associated by the RS algorithm
to o is arandom partition distributed with g-Plancherel measure [Str08].

Fig. 2.5 (taken from [FM12]), shows Young diagrams A of size up to 4, together with the
quantities Dy (q) (called generic degrees), the g-Plancherel weights M, ;(1) and the transi-
tion probabilities in the random walk construction of the g-Plancherel measure. Addition-
ally, Fig. 2.6 (also taken from [FM12]) shows a large random Young diagram distributed with
g-Plancherel measure for g = 1/2.

There is yet another way to see the g-Plancherel measure: via representation theory.
For this, we need to introduce the Hecke algebra, which is a well-studied deformation of
the symmetric group algebra; see e.g. [Mat99, GP00] for introductions to this topic. It can
be defined through generators and relations as follows: 7, 4 is the free associative algebra

with generators T, ..., T,—1 quotiented by
the braid relations: T;T;411; = Tjz1T;Ti41 (foralli<n-2);
the commutation relations: T;T; =T;T; (foralli,j<n-1s.t.|i— j|>1);
and the quadratic relations: (T;—¢q)(T; +1)=0 (foralli<n-1).

When g =1, the T; can be identified with the transposition s; = (i i+1) of the symmet-

12Gee [Ker92] for a proof that this is indeed a probability measure.

13The major index is a classical permutation statistics in the enumerative combinatorics literature. In par-
ticular, it is well-known that it is a Mahonian statistics, meaning that } ;e | g™ = (n} ¢!- Hence, the formula
in the main text indeed defines a probability measure.
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FIGURE 2.5 Generic degrees, g-Plancherel measures and g-transition probabilities on diagrams of
size n < 4.

ric group and #, is isomorphic to the symmetric group algebra. It can be shown that
for generic ¢, the algebra #, 4 is semi-simple'# and has irreducible representations V4
indexed by partitions of 7. Moreover the dimension of V7 is always equal to dim(A), inde-
pendently from g. We call g-character and denote by y*7 the character of V49,

It is well-known that the braid and commutation relations allow to define unambigu-
ously an element T,; of #, 4, for any permutation ¢ in G,. These elements form a basis
(Ty)oes, of #y 4. Thus, we can consider the regular trace 7, of the Iwahori-Hecke algebra,
which is a linear map 7, ; — C mapping any (Ty)s%q to 0 and Tiq to 1. This is an analogue
of the trace of the regular representation of G,,. When ¢ is a power of a prime, one can give
a representation-theoretical interpretation of 7, [FM12, Section 2.3], but for generic g, one
just thinks at it as a linear map. We then have the expansion, analogue of eq. (2.3),

D, (q) ha
Tq= gn ﬁ Xl’q = );nMn,q(/l) lem—(/U

Aq
Consequently, the dual normalized g-character defined as j2 (1) := def(%) satisfies

Eny,[Xal =0 (2.12)

for any o # id. This property, extending Lemma 2.2, characterizes the g-Plancherel measure

and will be the basis of our investigations.

14An algebra A is called semi-simple if every representation of A can be decomposed as a direct sum of
irreducible representations.
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FIGURE 2.6 A random Young diagram of size 200, taken with g-Plancherel measure (q = 1/2).

2.2.2 g-polynomial functions

In this section, we present a g-version of the Ch-basis of the algebra Ay, using g-

characters of the Iwahori-Hecke algebras. To this end, for a partition p of n, we define

op=012,...,p10)(p1+1,p1+2,...,01+p2) - (P1+ - +pr-1+L,...,01+ -+ 0r),

which is a specific permutation of type p. We then set, for any partition p,

Chy oy = | MDA+ D X aip V) il IA;
wq -
else.

Unlike in the symmetric group case, the character value would change if one replaces
O Al 1ul by another permutation on type ,ulw_“", but this does not create difficulties.

It turns out that these normalized q-characters can be expressed in terms of the usual
Ch (i.e. corresponding to g = 1) and vice-versa. More precisely, the following was proved
in [FM12, Section 3.6], based on a result of Ram [Ram91]. We denote A := Achar = Ageom the
algebra of polynomial functions on Young diagrams introduced above in Sections 2.1.2.4
and 2.1.3.2. In the following, we use some standard notation of symmetric function theory
(see e.g. [Mac95]), namely, for a partition p, £(p) is its length, z, a standard combinatorial
factor, m,, p, and h, are respectively the monomial, power-sum and complete homoge-
neous basis of the symmetric function ring, and { f | g) is the Hall scalar product between

functions f and g.

Proposition 2.9

The family (Ch,, 4), indexed by partitions p of all sizes, is a C(q)-basis of the algebra
A(q) := A ®c C(q). Moreover, the transition matrices between the Chy, ; and the Chy,

are triangular, given as follows: for any partition u of k, one has

o pi — 1
(g-DPChy W)=Y M(m hy) Chy(A); (2.13)
ptk Zp
ChyW [[(@" -1 =Y (-1 {(m,| pu) Chp4(A). (2.14)
i pkk

2.2.3 Our results

We start with an informal description of the strategy that we used to study the g-

Plancherel measure. Using eqgs. (2.12) and (2.14), we can compute the expectation of the
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random variable Chy, for all y:

1- q)lul
[1:(1 =g+
Higher moments can then be computed (at least asymptotically) using the combinatorial

E[Chyl = nn-1)...(n—|ul+1).

description of products of C/;, mentioned in Section 2.1.2.4. This will give us the asymptotic
behaviour of Ch, for any u. In a second step, we consider some functional describing the
geometry of the diagram, which lies in the algebra A(qg), and expand them in the basis (Ch,,).

Though this strategy is similar to the case g = 1, the framework is qualitatively different

for other values of g:

* Chy has an expectation of order n'* and is concentrated around its expectation, while
for g = 1, it is centered with fluctuations of order n!“/? (when u has no parts equal to
1).

* the diagrams have long rows and columns so that the encoding as continual Young

diagrams and the renormalization by v/ are not relevant any more.

Consequently, the functionals pj used in Section 2.1.3.2 do not encode well the geometry
of the diagrams any more. We use instead the so-called the power sums of Frobenius coordi-
nates. These are defined as follows: for a diagram A, we let d be the size of its Durfee square,
i.e. the largest integer such that 1; = d. Then, writing A’ for the conjugate partition of A, we
set d

PF (1) =
i=1
We now state first- and second-order convergence results for PFy, proved in [FM12].

Theorem 2.10: Asymptotics of g-Plancherel measures

For each n =1, let A, be a g-Plancherel-distributed random Young diagram. Then, as

A—i+1/2% -/ —i+1/2)F.

n tends to +oco we have convergence in probability of the renormalized power sums

PFr(A):
K PFc(dy)  (1-g)F

k k
n 1-¢g
Moreover, if we denote the renormalized centered power sum by
PF/(A,) —E[PF,]
nt ’

Vk=1,

Wn,q,[ ) = \/ﬁ(

then, for any k > 1, the random vector (Wj, 4,1, Wy g,2, ..., Wy, q,k) converges in law to-

wards a Gaussian vector of covariance matrix

1 1
cov(W, o, Wy ) =€m(1— “m( - )
( q,¢ q,m) ( q) 1— q€+m—1,1 1= q[,m

The method also yields a central limit theorem for g-characters giving a g-analogue of
Theorem 2.4, see [Mé110]. The first-order convergence in Theorem 2.10 implies a conver-
gence result for the row-lengths of the diagram: namely, for any fixed i = 1, the quantity A;/n
tends in probability to (1—g) g'~' [FM12, Theorem 1]. The simulation in Fig. 2.6, where each
of the first rows is around half the previous one, illustrates well this limit theorem. Unfortu-
nately, we cannot directly infer a central limit theorem for the row-lengths from the one for
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polynomial functions; for such a result, we refer to an article of Bufetov [Buf12], who uses a

variant of the Robinson-Schensted correspondance.

2.2.4 On extremal characters of G, and the Thoma simplex

The g-Plancherel measure is actually a special case of a larger family of measures, linked
to representation theory of G, = U,,>1 &, or more precisely to the classification of its (ex-
tremal) characters. It has been shown by Thoma that these characters are indexed by the
following simplex, now called the Thoma simplex:

Boo ={((@iz1, (Bi=1,7) € 10, 1NNy 4 3 (@ + B) = 1}
i=1
Characters are functions on G, and induce by restriction to &,, some central functions
on &,. The latter can be decomposed as a nonegative sum of irreducible G, -characters,
inducing a probability distribution on Young diagrams of size n.

We skip the details, the point being that with each element of A, is associated a se-
quence (P,),>1 of probability measures on Young diagrams of size n. The measures ob-
tained this way include examples discussed so far. The Plancherel measure corresponds to
y =1, a; = B; = 0, while the g-Plancherel measure for q < 1 is associated with a; = (1-¢) ¢!
andy = f;=0.

With this point of view, the law of large numbers in Theorem 2.10 was already known
[KV81, KOV04]. The central limit theorem is however new, and the method presented here
can be extended to other points of the Thoma simplex, see [Mél11, Buf12].

2.3 A deformation linked with Jack symmetric functions

In this section, we present a law of large numbers and a central limit theorem for random
partitions distributed according to a second family of one-parameter deformations of the
Plancherel measure. This one-parameter deformation is defined using the so-called Jack
symmetric functions. This is based on the paper [DF16], written in collaboration with M.

Dotega.

2.3.1 Background and definition

Let us start by giving some motivated definition. We have seen that the Plancherel mea-
sure is related to the representation theory of the symmetric groups & ,,. On the other hand,
a remarkable well-known result of Frobenius connects irreducible character values of G,, to
the ring of symmetric functions. Namely, if p,, and s, denote respectively the power sum and
Schur symmetric functions, then one has

Pu= Y Xpsa- (2.15)
Ar-n
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FIGURE 2.7 A diagram of size n = 500 taken at random with Jack-Plancherel distribution of parameter
a=1/3.

Introduced by H. Jack in [Jac70], the now called Jack symmetric functionsl5 form a one-
parameter deformation of Schur functions, depending on a positive real parameter a. Fol-

lowing Macdonald [Mac95], we will consider the /-normalization of Jack symmetric func-

tions and denote ]/(1“) the Jack symmetric function indexed by A. For a = 1, we recover

1 _ _nl
]/1 — dim()

recover the so-called zonal polynomials, which have also a representation-theoretical in-

Schur functions, up to a multiplicative constant: namely, sy. For a =2, we
terpretation [Mac95, Section 7] and are used in statistics and random matrix theory (see
e.g. [Tak84, HSS92]). On the other hand, Jack symmetric functions are a degeneration of the
celebrated Macdonald symmetric functions (introduced in [Mac95, Chapter 6]), which have
played a central role in integrable probability theory in recent years.

Eq. (2.15) can be deformed, replacing Schur functions by the more general Jack symmet-

ric functions:

pll = Z aﬁr(a)]gta). (2.16)
AFn
. s 2
Specializing a to 1 gives ﬁﬁ’(l) = d‘%{’” )(ﬁ In particular, for u = (1"), we have 19?1’%) = %,

which is the Plancherel probability of the partition A. For general @, one can prove that the
formula P'® (1) = 19?&’,(1‘;) still defines a probability measure on %, (i.e. these are nonnegative
numbers that sum up to 1). This is a natural deformation of the Plancherel measure, which
we call Jack-Plancherel measure of parameter a. A simulation is given on Fig. 2.7.

This measure first appeared implicitly in an article of Kerov , who defined a Jack defor-
mation of the Plancherel growth process [Ker00] — more precisely, Kerov constructs Jack-
Plancherel distributed Young diagrams via a Markov process similar to that of Fig. 2.5 for g-
Plancherel measure. Jack-Plancherel measures (and further generalizations) have then been
analyzed in a series of research articles in recent years [Ful04, BO05, Mat08, Ols10, Mat10,
DF16, BGG17, GH19, DS19, Mol20] and in Okounkov’s survey of random partitions [Oko05,
Section 3.3].

For a further motivation, we need to make a small detour through random matrix theory.
The following discussion is meant to be informal, more details can be found, e.g., in the in-
troduction of [GH19]. Of fundamental interest in random matrix theory are the eigenvalues

x1 > ---> xy of an N x N Hermitian random matrix with independent complex Gaussian

15Actually, the terminology Jack polynomials is more common. However, in the theory of symmetric poly-
nomials, it is customary to use polynomials when working with a finite number of variables and functions for
infinitely many variables. It is therefore more logical to speak of Jack symmetric functions here.
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entries over the main diagonal. The distribution of {x,..., xy} is called the Gaussian unitary
ensemble or GUE for short. Considering instead a symmetric real random matrix, we get the
Gaussian orthogonal ensemble or GOE for short. It has been observed that there is a natu-
ral continuous deformation interpolating between these two distributions, which is called
Gaussian f ensembles or GPE: for = 2, it specializes to the GUE; for =1 to the GOE. These
particle systems (the x; are sometimes thought of as particles on the real line) are now well-
understood: see [VV09, RRV11] for the description of the large N bulk and edge fluctuations
of the GBE!S.

These GBE models are continuous particle systems, in the sense that the x; are continu-
ous random variables. A natural question is to find analogue results for discrete particle sys-
tems, i.e. where the x; live in a discrete set, e.g. are integers. Partitions can be seen as discrete
particle systems by setting x; = A;+ N—i. It turns out that the Plancherel measure provides a
good discrete analogue of the GUE, in the sense that its algebraic structure makes it tractable
and that its asymptotic behaviour resembles that of the GUE (see, e.g., [Oko05]). More gen-
erally, Jack-Plancherel measure is meant to be a discrete analogue of the GGE (for § = 2/ a).
We will provide results in this direction, showing some similarity of Jack-Plancherel random

partitions with the GSE ensembles.

2.3.2 Some nice observables: Jack characters

The normalized characters Ch,, used to analyze the usual Plancherel case have a natu-
ral a-deformation. Namely, we consider the expansion of Jack symmetric functions on the

power sum basis

JP=Y 6050 pp. 2.17)
o:
lpl=IAl
For @ = 1, one has ];1) =|A]! di;fw and thus, 9‘()1)(/1) =|A|! )Zp(/l). We now look for a normal-

ization analogue to the definition of Chy, in (2.5). Recall that for a partition u, m;(u) is the
number of parts equal to i in y, and z, is the combinatorial factor [];5; i"" ) (m; (w)!; we
define

Ch = T (M) 2,0 L) 1AL Ll
0 if A < |pl.
From now on, we refer to the functions Chff” as Jack characters, even though they have
no representation-theoretical interpretation for general a. One can check easily that for
a = 1, we recover the function Ch,, defined in (2.5), i.e. we have Chﬁ) = Chy,. Moreover, Jack

characters have a trivial expectation with respect to Jack-Plancherel measure, generalizing

16Eor a random particle system x; > --- > xy, studying the large N “edge fluctuations” consists in finding a
distribution limit for a renormalized version of the vector (x1,- -, x;) for a fixed k (and of (xp;, -+, Xn_k+1) if this
does not follow by symmetry); in words, we are looking at the first (and last) few particles, sometimes called the
extreme ones. For “bulk fluctuations”, we look at a limit for sets of the form {x; b(IN) — a(N); i < N}n[-K, K] (for
any fixed K > 0) where a(V) is chosen to be of the same order of magnitude as x;, in the interval (x, x;) but far
from its extremities and b(NN) is chosen such that the number of particles in this interval remain stochastically
bounded. In words, we are looking at a fixed number of particles in a small interval in the interior of the particle
system. In both cases, these are local statistical information on the system, usually hard to obtain.
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Lemma 2.2: if p is not of the form (1¥), then
Ep (Chy”) =0. (2.18)

This equation follows easily from a classical orthogonality property of Jack symmetric func-

tions; we refer to [Mat10, Section 8] for details.

At this stage, we might wonder whether Jack characters span a subalgebra of the space
of functions of Young diagrams, as usual characters. Remarkably, it the case and this relies

on the notion of a-shifted symmetric functions.

Definition 2.11

An a-shifted symmetric function F is a sequence (Fy)n>1 satisfying the following

properties.

* (shifted symmetry) For each N = 1, Fy is a polynomial in N variables x1,---, xn
with coefficients in Q(a) that is symmetricin x; —1/a, xo —2/a, ..., xy — N/a.
* (stability) foreach N =1,

Fnii1(x1,...,xN,0) = Fn(Xxq,...,XN).

* (degree bound) sup - ; deg(Fn) < oo.

A function F on all Young diagrams can be seen as the sequence (Fy)n=; of its restric-
tions (Ay,...,An) — F(Ay,...,An) to Young diagrams of length at most N (setting A; = 0 for
i > /(1)). Using this identification, in [Las08, Proposition 2], M. Lassalle proved that the
functions Chff‘) are shifted symmetric functions; moreover, they form a Q(a)-linear basis of
the ring of a-shifted symmetric functions. This implies in particular that there are coeffi-
cients gﬁ,"(,“) in Q(a) such that

ChD.Ch® = Y g@ Ch®. (2.19)

7 partition
of any size

These coefficients, called structure constants of Jack characters, play a key role in our work.

REMARK For a = 1, that Chy, is a 1-shifted symmetric function is a direct consequence of
eq. (2.7). I am not aware of an analogue of eq. (2.7) for general a. The only known way to
compute Chﬁf‘) is by induction on k = |u], solving a linear system of exponentially growing
size at each step; see [Las09, Section 9]. An analogue of eq. (2.7) would give a simpler way to

(a)
w

compute Ch,,’ and would certainly be useful.

REMARK We recall that Jack symmetric functions are a degeneration of the celebrated Mac-
donald symmetric functions, depending on two parameters g and ¢. A natural question is
whether the discussion above can be extended to this two-parameter setting. There is a
natural notion of g, t-shifted symmetric function; see [Oko98]. I am however not aware of
a way to normalize the coefficients of the power-sum expansion of Macdonald symmetric
functions in such a way that they define g, ¢ shifted symmetric functions. This is a major

obstacle in trying to generalize results of this section to the Macdonald setting.
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2.3.3 Our results

Our first result is a central limit theorem for Jack characters under Jack-Plancherel mea-
sure, giving a natural analogue of Theorem 2.4. The original reference is [DF16, Theorem
1.2].

Theorem 2.12: Asymptotic normality of Jack characters

Choose a sequence (Zi) =, 3, of independent standard Gaussian random variables.

gooe

Let (A()) =1 be asequence of random Young diagrams of size n distributed according

to Jack-Plancherel measure of parameter a. Define

(a) (@)
_VakoD,.,  Ch

(@m)*2 pki2/k

Then, as n — oo, we have:

yalnse

where — means convergence in distribution of the finite-dimensional laws.

As in the case a = 1, we also have more geometric convergence results. Instead of renor-
malizing the Young diagram A, in both directions by a factor 1//7, we rescale it by vVa/n
horizontally and by 1/\/a n vertically'’. Following [DF16], the resulting (continual) Young
diagram is denoted Aa(/_ln). We then have the following results [DF16, Theorems 1.1 and
8.1], generalizing Theorems 2.7 and 2.8.

Theorem 2.13: Law of large number for Jack Plancherel measure

Let A, be a random Young diagram of size n, distributed with Jack-Plancherel mea-
sure of parameter a. Then the rescaled Young diagram Aa()_ln) tends to the function

Q defined in (2.9). This convergence holds in probability in the space of continuous

functions from R to R endowed with the supremum norm.

For the central limit theorem, we use the functionals Gy, € Ageom introduced in Eq. (2.11).

Theorem 2.14: Central limit theorems for Jack Plancherel measure

Let A, be a Jack-Plancherel distributed Young diagram of size n. We also denote by
Z1,7Z,--- independent standard Gaussian random variables. Then we have the fol-

lowing convergence in distribution (in the sense of finite-dimensional laws)

(\/ﬁ[iyh(Aa(/fn))—ﬁh(Q)])th_,(\/%_\/alli_l\/al[kodd])hzl.

In the law of large number, the limit is indepedent of a. The central limit theorem is more
interesting, because of the appearance of a deterministic shift in the fluctuations, which
disappears for a = 1. This came first as a surprise for us, but we learned afterwards that such

a term also appears when studying fluctuations of linear statistics of Gaussian  ensembles,

17Such different scaling factors for rows and columns are standard in the theory of Jack symmetric functions,
see [Ker00] and the deformations of hooks and contents in [Mac95, Section 6.10].
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see [DE06, Theorem 1.2]. This strengthens the analogy between Jack-Plancherel random

partitions and Gaussian § ensembles.

2.3.4 Proof method: polynomiality in @ and Stein’s method

We discuss here the proof method of Theorem 2.12; the way Theorems 2.13 and 2.14 are
deduced from it is then essentially similar to the & = 1 case (except that expressions of Ch'®
in terms of the py, or gy, are less explicit than for a = 1). The goal is not to give a full account
of the proof, but to enlighten the differences with the a = 1 case and some new ingredients
that we introduced.

The basic idea for proving Kerov’s central limit theorem for characters (i.e. the @ = 1
case) was to analyze the moments of Chy) by expanding products Chy, Ch, on the Ch; basis.
The structure constants in this expansion have a combinatorial interpretation, thanks to the
representation theory behind the scene, and one can determine asymptotically dominant
terms.

(a)
b/

In the general a case, we still have an expansion of ChLa) Ch(va) on the Ch; "~ basis (see

eq. (2.19) above). However, the structure constants g;ﬁ),m no longer have a combinatorial
interpretation and we have to find a way around. By carefully analyzing Lassalle’s algorithm

to compute Chff‘) recursively, we could prove the following result. Let

ny(w =pl+0w), na(w=Ipl—2Ww), nz(w=Iul—~£€Ww +myw.

Then we have:

Theorem 2.15: Polynomiality of structure constants of Jack characters

Fix three partitions g, v and n. The structure constant gfﬁ;n is a polynomial in

Y= \/&_1 — v/a with rational coefficients and of degree at most

min n;(u) + n;(v) — n; ().

=1,z

By definition, the structure constants g{fﬂ;n are rational functions in y/«; in particuler,

the polynomiality alone in the above statement (without the degree bound) is already non-
trivial. Nonetheless, the bound on the degree is important in that it allows to compute some
of these structure constants by polynomial interpolation from the cases a € {1/2,1,2} (for
which representation-theoretical tools are available). It turns out that this is sufficient to
determine the asymptotics of the lower moments (up to order 4) of Chgg))

Of course, knowing the asymptotics of moments up to order 4 is not enough to prove
convergence to a Gaussian distribution. We therefore used an extra ingredient, called Stein’s
method (see Section 1.1 for a brief description of Stein’s method). Stein’s method had already
been used in the context of Jack-Plancherel measure by Fulman [Ful04], who proved a cen-
tral limit theorem for Ch'?). Our contribution was to extend it to the vector of all Ch'®

@) (k)
a multivariate version of Stein’s method, due to Reinert and Réllin [RR09]); our polynomi-

(using

ality result for structure constants is crucial to control the various error terms appearing in

the theorem of Reinert and Rollin. We note that as a byproduct of the proof, we get not only
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the convergence to a Gaussian vector as stated in Theorem 2.12 above, but also a control on

the speed of this convergence; see [DF16, Theorem 1.3].

REMARK Our polynomiality result for structure constants of Jack characters is interesting
independently of the probabilistic application presented here: in the appendices of [DF16],
we give other applications of this result. Most notably, we used it to prove polynomiality
results in two conjectures of Goulden and Jackson relating Jack polynomials and combina-
torial maps on unoriented surfaces (see [GJ96] for the original statement of the conjectures

and [DF16, Section B.2] and [DF17] for our polynomiality results).

2.3.5 Some subsequent works

We briefly mention some later works, related to the paper [DF16] presented here. In
[GH19], Guionnet and Huang found the edge fluctuations of Jack-Plancherel random Young
diagrams. They coincide with that of Gaussian  ensembles, answering a question raised
in our paper. In another direction, several other models of random partitions related to
Jack symmetric functions have been introduced and studied (some of them generalize Jack-
Plancherel measure, others are a bit different in that they involve partitions of fixed length
but varying size). We refer to [BGG17, Hua21, DS19, Mol20] for central limit theorems for

such models.
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CHAPTER 3

(Weighted) dependency graphs

As explained in the introduction, a basic question in discrete probability theory is the
following. Let 0,, be a random combinatorial object of size n and f a function of interest on
the corresponding set of objects. The question is to understand the asymptotic behaviour of

X, = f(0,). When X, counts some small substructures and when the model has some kind
Xn—E[Xn]
VVar(X,)
converges in distribution to a standard Gaussian variable Z. Proving this asymptotic nor-

of independence, we expect X,, to be asymptotically normal, meaning that X,, :=

mality might be difficult, and the goal of this chapter is to discuss general tools for such
problems, namely the theory of dependency graphs and a weighted variant.

In Section 3.1, we present the standard theory of dependency graphs, as developed by
Janson. Section 3.2 reports on an improvement of the cumulant bound in this theory, given
in [FMN16], which yields estimates on the speed of convergence and moderate deviationsre-
sults for X,,. Section 3.3 gives the main contribution of the author in this chapter. It presents
a weighted extension of the theory of dependency graphs, extending widely its range of ap-

plications; original references are [Fér18, DF19b, Fér20a].

3.1 The theory of dependency graphs

3.1.1 Definition and a normality criterion

We consider a family of random variables {Y,, @ € A} defined on the same probabil-
ity space. A dependency graph for this family is an encoding of the dependency relations
between the variables Y, in a graph structure. We take here the definition given by Jan-
son [Jan88]; we refer also to papers of Malyshev [Mal80] and Petrovskaya/Leontovich [PL83]

for earlier appearances of the notion with slightly different names.

Definition 3.1

A graph L is a dependency graph for the family {Y}, a € A} if the two following condi-

tions are satisfied:

1) the vertex set of Lis A.

2) for any subsets of vertices A; and Ay, if there is no edge connecting A; to A, in

L, then {Y,, @ € A;} and {Yy, a € Ay} are independent.
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Informally, one might think that vertices @ and 8 are connected by an edge if the corre-

sponding Y, and Y are correlated.

Example 3.2

Consider the Erdds-Rényi random graph model G(n, p,;). By definition, a random
graph G in this model has vertex set [n] := {1,..., n} and it has an edge between i and j
with probability p,, all these events being independent from each other. Let A be the
set of 3-element subsets of [n] and for a = {i, j, k} € A, let Y, be the indicator function
of the event “the graph G contains the triangle with vertices i, j and k”.

Let L be the graph with vertex set A such that there is an edge between a and g if and
only if |a N B| = 2 (that is, if the corresponding triangles share an edge in G). Then L is
a dependency graph for the family {Y,, a € A}.

Note also that the complete graph on A is a dependency graph for any family of variables
indexed by A. In particular, given a family of variables, it may admit several dependency
graphs. The fewer edges a dependency graph has, the more information it encodes and,
thus, the more interesting it is. It would be tempting to consider the dependency graph with
fewest edges, but such a graph is not always uniquely defined [FMN16, Example 9.1.4].

Dependency graphs are a toolbox to prove central limit theorems for sums of partially
dependent variables. The following theorem is due to Janson [Jan88, Theorem 2] (see also

an earlier paper of Petrovskaya and Leontovich [PL83] for the case s = 3).

Theorem 3.3: Janson’s normality criterion

For each n, we let {Y},;,1 < i < N,,} be a family of N, random variables such that a.s.,
one has sup,_y 1Yyl < M, for some M, > 0. Let L, be a dependency graph for this
family and D, — 1 be the maximal degree of L,. Finally, we set X,, = Zﬁ”l Y, ; and
o2 =Var(X,).

Assume that there exists an integer s such that

1/s
(g_) Du pp, — 025 1 — oo, 3.1)

Then X, is asymptotically normal.

We will discuss the proof of this normality criterion in the next section. Informally, the
condition (3.1) says that D, is small, i.e. that the dependency graph L, is rather sparse (so
that we are close to the situation of a sum of independent random variables). This condition
is usually easy to check on examples (except sometimes for determining the order of mag-
nitude of the variance). We illustrate this criterion by continuing the example of triangles in

Erdds-Rényi random graph model G(n, p;,).
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Example 3.4

We use the same model and notation as in Example 3.2. Assume to simplify that p,
is bounded away from 1. One has N,, < n®, D, =nand M, = 1. An easy computation
— see, e.g., [JER00, Lemma 3.5] — gives 02 = max(n’p3, n*p>). Thus the hypothesis
(3.1) in Janson’s theorem is fulfilled if p, > n~!/3*¢ for some & > 0. When this holds,
Theorem 3.3 implies that, after rescaling, the number X, of triangles in G(n, p,) is
asymptotically normal.

The latter is in fact true under the less restrictive hypothesis p, > n~!

, as proved by
Rucinski [Ruc88]. The asymptotic normality in the full range can be proved through
dependency graphs, using a refined normality criterion due to Mikhailov [Mik91]; see
also [JLR0O, Chapter 6] for a complete account of asymptotic normality of the number

of triangles and of more general subgraph counts in Erdés-Rényi random graphs.

This is only one example among many others. Dependency graphs have been used to
prove asymptotic normality in various other domains. Let us give a non-exhaustive list of
bibliographic pointers.

» Before Janson’s paper, Petrovskaya and Leontovich had studied mathematical models
of cell populations using a notion similar to that of dependency graphs [PL83].

 After Janson’s work on random graphs (completed by papers of Baldi-Rinott [BR89],
Rinott [Rin94] and Mikhailov [Mik91]), the theory has found a field of application
in geometric probability, where asymptotic normality has been proven for various
statistics on random point configurations: the length of the nearest-neighbour graph,
of the Delaunay triangulation and of the Voronoi diagram of these random points
[AB93,PY05], or the area of their convex hull [BV07]; see also [Pen03b] for applications
to geometric random graphs.

* More recently, dependency graphs have been used to prove asymptotic normality of

pattern counts in random permutations [Bé6n10, HJ10, Hof18].

3.1.2 Behind the normality criterion: joint cumulants

We give here the main lines of the proof of Theorem 3.3. The proof uses the notion of

joint cumulants (sometimes called also mixed cumulant), which we now recall.

Let Xj,..., X, be real-valued random variables on the same probability space with finite
small exponential moments!, i.e. we assume that E(exp(eX ;1)) < +oo for some € > 0 and all

J < r. We define their joint cumulant as
k(X100 Xp) = 11 1] log (E(exp(t X+ + £,X,) ). (3.2)

As usual, [ ... t;]F stands for the coefficient of ;... ¢, in the series expansion of F in non-

negative powers of f1,..., ;. The finite small exponential moment assumption ensures that

!In fact, one can defined more generally joint cumulants of order r as soon as the variables have finite r-th
moment, but let us restrict to the case with finite small exponential moments for simplicity.
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exp(f Xy +---+ £, X;) is analytic around t; = --- = ¢, = 0. If all random variables X;,---, X, are
equal to the same variable X, we denote x,(X) = x(X,..., X) and this is the usual cumulant

of a single random variable.

The main properties of joint cumulants for our purpose are the following (see, e.g.
[JLROO, Chapter 6] for items 1-2 and [Jan88, Theorem 1] for item 3).

Proposition 3.5

1) (Xy,...,X;) —«(Xy,..., X;) is a symmetric multilinear functional.

2) If the set of variables {Xj,..., X;} can be split into two mutually independent
sets of variables (e.g. {Xj, X»} is indepedent from {Xj,..., X;}), then the joint
cumulant x (X3, ..., X;) vanishes;

3) Let Z, be a sequence of real-valued random variables with E[Z,] = 0 and
Var[Z,] =1 for all n = 1. Assume that there exists an integer s = 3 such that

kxr(Zy) tends to 0 for all r = s. Then Z, converges in distribution to a standard

Gaussian variable.

The proof of Theorem 3.3 now goes as follows. First, we write
Kr(Xn) =kXpyoo s X) = Y. &K (Ynipse-or Yuriy)-
1<iy,oyir <Ny
The idea is that, because of property 2 above, many summands in the right-hand side do
vanish. Namely, x (Yy,i,, ..., Yn,i,) = 0 unless the subgraph induced by the dependency graph
L on the vertex set {iy, ..., i;} is connected. One can prove that the number of nonzero terms
is at most C; NnD,rfl, and each nonzero term is easily bounded by C, M, (here and in what

follows, C, are universal constants, depending only on r, which may change from line to

line). This yields the following lemma.

Under the assumptions of Theorem 3.3, we have |« (X},)| < C,M,ZNnD,’[l.

Deducing Theorem 3.3 from here is immediate. We consider the normalized version
X, = X";—EX" of X,,; its cumulants are given by k(X)) = 0, xr(X,) for r = 2. An easy com-
putation starting from Lemma 3.6 and Eq. (3.1) shows that Kr(Xn) tends to O for r = s. This

implies the asymptotic normality of X,, by Proposition 3.5, item 3).

3.2 Improving the cumulant bound

3.2.1 Background: cumulants, speed of convergence and moderate deviations

We have seen in the previous section that a sequence of random variables Z,, converges
to a standard Gaussian variable .47(0, 1) if, for any fixed r larger than a threshold s, its cumu-
lant x(Z,) of order r tends to 0.

It turns out that, if s = 3 and if one can control the rate of decay of «,(Z;,) uniformly
on r = 3, one can establish stronger estimates than asymptotic normality: namely one gets
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an upper bound on the speed of convergence of Z,, to .4'(0,1) (with respect to Kolmogorov
distance? dy,)) and deviation probability estimates for Z,, (at intermediate scales between
asymptotic normality and large deviations; these are sometimes called moderate deviation
estimates).

This kind of results, together with applications, can be found in the work by the prob-
abilist Statuleviius and his students Rudzkis and Saulis; see the book [SS91a] or the recent
survey [DJS21]. We have in particular the following proposition [SS91a, Corollary 2.1 and

Lemma 2.3].

Proposition 3.7

Assume that Z,, is a sequence of variables with expectation 0 and variance 1 whose
cumulants are bounded as follows: there exists C > 0, y = 0 and a sequence A, tending

to +oo such that, for all r and n, we have

(rht+y
|k, (Z)|=C % o
A2
Then Z,, tends to a Gaussian random varaible Z at speed dx(Z,, Z2) =0 (A;”(HZY)).
Moreover, for any nonnegative sequence x, << min(Ay L) ; A}/ 2), one has the upper
and lower tail estimates
P[Z, > x,] L3
—— =—explzx; K3(Z 1+0(1)); 3.3
PIZ= 1) p(3x0x3(Zn)) (1+0(D)) (3.3)
———————=¢ - =X,K3(Z,)) 1+ 0(1)). 3.4
PIZ=—x,] xp (- 2x3x3(Zp) (1 +0(1)) 3.4)
Some comments are useful. The proposition tells us that the estimates
PlZ, = x,] ~ P[Z = x,] is valid not only for bounded sequences x, (as asserted by
asymptotic normality), but also in the full range x, = O(A}l/ 3y if y<1lorx,= o(A,lq/(ZYH))

otherwise. Indeed, for x,, = 0(AL/3), the bound k3(Z,) = O(A,}) implies x3x3(Z,) = 0(1), so
that the right-hand side of (3.3) is 1 + o(1). In the case y < 1, when AL/3 < x,, < A,,}/@r+D,
the proposition gives us the correction factor needed to go from the Gaussian estimate
P[Z = x,] to an estimate for P[Z,, = x,].

Let us finally mention that [SS91a, Lemma 2.3] gives in fact more precise estimates, valid
for wider ranges of x,,. We limit ourselves to the version above to avoid too technical state-

ments.

REMARK For y = 0, which is the case we will use below, Proposition 3.7 can also be seen
as a special case of general estimates for random variables converging in the mod-¢ sense
(i.e. with some precise control on the renormalized characteristic function); see [FMN16,

FMN19]. We will not discuss further mod-¢ convergence in this thesis.

2The Kolmogorov distance between two probability distributions on R is simply defined as the supremum
norm between their cumulative distribution function. It is a standard way to measure speed of convergence in
asymptotic normality.
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3.2.2 A better bound for cumulants in the framework of dependency graphs

The important feature in Proposition 3.7 is that the parameter v, i.e. the dependence of
the cumulant bounds with respect to the order r, is crucial to obtain a sharp bound on the
speed of convergence and a large window for deviation estimates. It is therefore natural to
wonder how the constant C, in Lemma 3.6 depends on r. Déring and Eichelsbacher [DE13],
analyzing Janson'’s proof, show that one can take C, = ( r3(2e)’, so that Proposition 3.7 can

be applied with y = 2 in many settings with dependency graphs (the factor (2e)” plays no

role since it can be absorbed in D2, changing only D,, by a multiplicative constant.) In a
joint work with P-L. Méliot and A. Nikhegbali, we were able to improve this bound [FMN16,
Theorem 9.7].

Lemma 3.6 holds with C, =27~ 1772,

To obtain this bound, as before, we start with the expansion
Ke(Xn) =KXy Xd = Y. K (Ynipeeo Yuir)- (3.5)
1<iy,..,i;<Np

The idea was then to have a bound for each summand in the RHS taking into account the
dependencies among the variables Y, ; ,..., Y, ; (instead of using the same upper bounds
for all nonzero terms, as done before). We found the following general bound which could

be of independent interest; see [FMN16, Section 9.4].
Let Y3, ..., Y, be bounded random variables (|Y;| < M a.s.) with a dependency graph

H. Then we have
Ix(Yy,...,Y,)| < M"2" "1 ST(H),

where ST(H) is the number of spanning trees of H.

We do not discuss the proof of Lemma 3.9 here, but we briefly sketch the proof of
Lemma 3.8, assuming Lemma 3.9. Going back to (3.5), if {Y},;, i < N,,} has a dependency
graph L, then the subfamily {Y}, ;,,..., Y, ; } has dependency graph Lliy,..., i;], which is the
graph induced by L on {iy,...,i,}. Therefore we get

I, X =M270 Y ST(Lliy,..., i)
1=i},yir <Ny
The right-hand side can be bounded from above via a double counting argument, using the
following observation: for a given tree T on vertex set {1,..., 7}, there are at most N, D’}

lists (iy,...,i;) such that T is a spanning tree of L[iy,..., i,]. This proves Lemma 3.8.

3.2.3 Application to subgraph counts in G(n, p)

Our improved bound for cumulants (Lemma 3.8), combined with Proposition 3.7, yields

the following estimates in the dependency graph framework:

* a control of the speed of convergence;
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* precise moderate deviation estimates.

Speed of convergence estimates in this context had already been obtained around 1990
using Stein’s method ; see in particular the work of Baldi and Rinott [BR89, Rin94]. Their
method is more powerful than the cumulant approach, in particular in that it allows to deal
with variables Y, having only a few finite moments.

Precise moderate deviation estimates are however out of reach with Stein’s method® and
such estimates are, as far as I am aware of, new in the context of dependency graphs. To
avoid technicalities in this manuscript, we do not give a general result (which the reader
can find in [FMN16, Theorem 9.19]), but only a representative example. As in Example 3.2,
we consider the random graph G(n, p) (here we restrict to the case where p, = pisin (0,1)
independent of n) and study the number T, of triangles in G(n, p). We have, for 1 < v < n'/?

(see [FMN16, Example 10.10]):

n n?v 9p5(1 - p) v? 7-8p) V3
T, = p3+— = p—zpexp(— 3 + 5 P 5 (1+0(1)).
TV 36p°(1—-p) 324p°(1-p)° n

3 6
Let us decipher this formula. Keeping only the first term in the exponential, we get the tail of
1/3

P

the Gaussian limit law for T,. For v < n''°, the second term in the exponential is o(1) so that

the Gaussian tail gives a correct asymptotic equivalent for the tail probability of the triangle

/2 we need a correction factor of the form exp(C v3/n), which is

count. For n'?® < v« n!
explicitly given by our formula.

Similar bounds can be obtained for number of copies of other graphs than triangles,
see [FMN16, Theorem 10.1]. We also refer to [GGS20] for a later approach via martingales
of moderate deviation estimates for subgraph counts in G(n, p) (and in the related model

G(n, M) with a fixed number of edges).

3.2.4 Concentration inequalities

Upper bounds on cumulants can also be used to get concentration inequalities, i.e. upper
bounds for the probability that a random variable is far away from its expectation.

In [FMNZ20, Propositions 6 and 7], we prove the two following bounds, which are both
elementary consequences of Chernoff inequality.

31 have tried in collaboration with A. Réllin to use Stein’s method to obtain moderate deviation estimates
from the existence of an exchangeable pair, but we did not succeed.
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Lemma 3.10

Let (X,)n>1 be a sequence of random variables such that |X,| < N,M, a.s. and
K (Xp) < Ny(2Dp) " 1r""2M! for any r > 1 (for some parameters M,, N,, D;). Then,

for any positive sequence x, > 0, we have

2
X
P[1X, —E[X,]l = x,] <2 ex (——”) (3.6)
[| n nll n] p 9DnNnM121
xZ
P[1X, —E[X,]l = x,] <2 exp| - z . B
2(Var(X,) +2e Dy N M3, 555 ]

From Lemma 3.8, we know that the hypothesis above is satisfied when we have depen-
dency graphs as in Janson’s normality criterion (Theorem 3.3).

Concentration inequalities for sums of variables with an underlying dependency graph
had previously been given by Janson in [Jan04]. His basic idea is to split the sum
X, = Zi.\i"l Y,,; into subsums X7 =) ;c; Y, ;, where I is an independent set of the dependency
graph L,. The number of X; needed to decompose X, is precisely the chromatic number of
L,. Each X7 is a sum of independent random variables, to which we can apply Hoeffding’s
inequality. We finally get a concentration inequality for X,, involving the chromatic number.
The argument can be further refined to involve the fractional chromatic number instead:
this gives in general a better bound than (3.6), which involves the maximal degree of L,,.

There is nevertheless (at least) one setting in which the approach through cumulants is
usable while the decomposition using independent sets is not. This involves the measures
on partitions induced by the extremal characters of G, which we already mentioned in Sec-
tion 2.2.4. In this setting, permutations o in some symmetric group &y can be seen as ran-
dom variables in a noncommutative probability space and have a natural dependency graph
structure (for some good extension of the notion of dependency graph to noncummutative
probability spaces). However, the partial sums X; of permutations over independent sets I
of the dependency graph do not make sense as usual random variables; thus, one cannot
use Hoeffding’s inequality as in Janson’s approach. Our approach through cumulants how-
ever goes through and we get concentration inequalities for some polynomial functions of

Young diagrams under these measures; see [FMN20, Theorem 12].

3.3 Weighted dependency graphs

As we have seen, dependency graphs form a powerful and handy toolbox for proving
asymptotic normality results in models with underlying independent random variables. A
drawback is the non-robustness of the method: if variables are weakly correlated instead of
being completely independent, the method fails.

There are many natural models in the literature, where such weak dependencies appear:

among others,

* random graphs with a fixed number M of edges (known as the Erd6s-Rényi G(n, M)
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FIGURE 3.1 Example of a weighted graph with a spanning tree of maximal weight. Bold red edges are
the edges of a specific maximum weight spanning tree, the other edges of the graph are dashed for
more readability.

model);

* states of an ergodic Markov chain;

e substructures in uniform random matchings, multiset-permutations or set-
partitions;

e statistical physics models such as the symmetric simple exclusion process (SSEP) or

the Ising model.

In order to prove asymptotic normality in such models, we have introduced an extension
of the notion of dependency graphs, called weighted dependency graphs; see [Fér18] and the
later papers [DF19b, Fér20a].

3.3.1 Definition and normality criterion

To state the definition of a weighted dependency graph, we need to introduce some no-
tation. In the following we use the term weighted graphs for graphs with weights in (0, 1]
on their edges; for convenience, we sometimes see non-edges as edges of weight 0. The
weighted degree of a vertex is the sum of the weights of its incident edges. A spanning tree
in a graph is a subset of the edge-set connecting all vertices and without cycle. A span-
ning tree in a weighted graph has a weight, simply defined as the product of the weights
of its edges. This allows to define, for a weighted graph K, a quantity .4 (K) as the maximal
weight of a spanning tree of K. For example, if K is the weighted graph of Figure 3.1 for some
£ € (0,1), then .4 (K) = £* and a spanning tree of maximal weight is given by the red edges.
By convention, if K is disconnected, .4 (K) = 0.

We now define the notion of weighted dependency graphs of a family of variables
{Yq, @ € A} through bounds on their joint cumulants (see Section 3.1.2 for background on

joint cumulants).

Definition 3.11: Weighted dependency graphs

Fix C = (C;);=1. A weighted graph L with vertex set A is a C-weighted dependency
graph for the family {Yy, a € A} if, for any a;, ..., @, in A, one has

|K(Ya1,"' ’ Yar)| 5 Cr-/%(z[al) ;ar]),

where L[ay,- -, a,] is the weighted subgraph of L induced on the vertices aj, ..., @;.
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In the above definition, we need to consider also lists ay, ..., a, with repetition. In this
case, we take as many copies of each vertex as its multiplicity in the list a;, ..., a, and we
connect copies of the same vertex by edges of weight 1.

Some (informal) comments are needed.

* The definition depends on a sequence of numbers C = (C;);>;. They should be
thought of as constants in the following sense. In applications to prove asymptotic
normality, we will consider sequences of weighted dependency graphs depending on
n, and require that, for any given r = 1, the quantity C, does not depend on 7.

« The lower the weights in L are, the lower the joint cumulants of the variables should
be. Recalling that joint cumulants of independent random variables vanish, we see
that the weights in L quantify in some sense the dependency between random vari-
ables.

e Why is the functional .# a good choice here, and not another quantity depending in
a monotone fashion on the edge weights? I have no satisfactory explanation for that.
In particular, making a parallel with Lemma 3.9 is tempting, but I do not have a deep
understanding of why spanning trees appear in both places.

* For usual dependency graphs, the fact that a well-chosen graph is a dependency graph
in some model is usually immediate to check (see, e.g., Example 3.2). This is no longer
true for weighted dependency graphs since one has to prove a number of inequalities
for joint cumulants, namely one for each list (a3, ..., @,) of elements of A (or in fact for
each multiset of elements of A since joint cumulants are symmetric functionals). The
paper [Fér18] gives some general properties helping in proving that a given weighted
graph is a weighted dependency graph; one of them is the stability property described
in Section 3.3.2 below.

* Finally, let us mention that this is in fact a simplified version of the definition, which
covers only some cases of applications. The most general version also involves a func-
tion ¥, giving some weights to multisets of vertices ; we will not discuss it here and

refer the reader to [Fér18] for details.

With this definition in hand, one has a natural extension of Janson’s normality criterion
(see [Fér18, Theorem 4.11 and Remark 4.12] fir the original reference). We do not discuss the

proof of this criterion here.

Theorem 3.12: An extension of Janson’s normality criterion

For each n, let {Y,,;,1 < i < N} be a family of N, random variables; such that there
exists M > 0 with |Y,, ;| < M a.s. for all n,i = 0. For each n, we let fn be a C-weighted
dependency graph for this family for some C = (C,) > independent of n. We call D,,—1
the maximal weighted degree of L. Finally, we set X, = Zfﬁ“l Y, and 0'%1 = Var(X,,).

Assume that there exists an integer s such that

1/s
(g—z) 5—:—»Oas n — oo. (3.8)

Then, X, is asymptotically normal.
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The main difference with Janson’s normality criterion (Theorem 3.3) is that we consider
weighted degrees and not usual degrees. Since the weights are in [0, 1], weighted degrees
are smaller than usual degrees. In particular, weighted degrees can be small even when the
underlying graph of L, is the complete graph, i.e. when one cannot find two independent
variables in the family {Y, ;,1 < i < N,}. Consequently, Theorem 3.12 has a larger range of

applications than Theorem 3.3.

3.3.2 A stability property

In this section, we present a stability property of weighted dependency graphs. Infor-
mally, when we have a weighted dependency graph for a family {Y,, « € A}, we can automat-
ically construct a new one for monomials Y; = [[,¢; Y, in the original variables Y,. As we
will see in the next two sections, this property is useful in applications.

Let us present this formally. For m = 1, we denote by MSet<,,(A) the set of multisets
of size at most m of elements of A. For I € MSet-,,(A), we let Y; = [[4¢; Yo. Furthermore,
let L is a weighted graph with vertex set A and denote w(i, j) the weight between i and j;
by convention w(i, j) = 0 if there is no edge between i and j and w(i,j) =1ifi = j. We
construct a weighted graph L™ with vertex set MSet<,,(A) as follows: the weight W (I, ) of
the edge between I and J is given by

W(I,]) = max w(i, j).
i€l, jeJ

With this notation, we have the following result.

Proposition 3.13: Stability of weighted dependency graphs

Let {Yy, @ € A} be a family of random variables with a C-weighted dependency graph
L, and fix a positive integer m.

Then there exists a sequence C' = (C.),;1 depending only on m, r and C such that L™
is a C'-weighted dependency graph for the family {Y}, I € MSet,,(A)},

The proof of this proposition uses a general formula for cumulants of products of ran-
dom variables, due to Leonov and Shiraev [LS59], and some elementary combinatorial ob-

servations regarding spanning trees. We refer to [Fér18, Proposition 5.11] for details.

3.3.3 A first example: graphs with a fixed number of edges

We now give an example of application of the extended criterion; this example is an
analogue of Example 3.4 with weak dependencies. We consider the triangle count statistics
in Erdés-Rényi random graph models G(n, M},), i.e. when G is taken uniformly at random
among all graphs with vertex-set [n] and M, edges. To simplify the discussion, we will as-
sume that M, is of order n?, but the method works in more generality; it also works for
counting copies of more general subgraphs in G(n, M,,), see [Fér18, Section 7].

Let A, be the set of unordered pairs of vertices, i.e. of 2-element subsets of [n]. We start

by studying the simple random variables (Y¢)cca,, Where Y, is the indicator function of the
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event “G contains the edge e”.

Lemma 3.14: Weighted dependency graph for edges in G(n, M)

Let K, be the complete graph on A, with weight 1/M,, on each edge. Then K, is
a C-weighted dependency graph for the family {Y,, e € A,}, where C = (C;),>; is a

sequence that does not depend on .

We skip the proof of this lemma which is rather technical. It is based on the facts that the
joint moments of the random variables (Y¢).c 4, are explicit and that joint cumulants can be
expressed as linear combinations of joint moments.

We now consider indicator functions of triangle containments. Set B, = ([g]). For any
{i, j, k} in By, we define a random variable Z; ; x such that Z; ; x = 1 if the triangle {i, j, k}
belongs to the random graph G, and 0 otherwise. Note that Z; j x = Y}; j1 Y}; ky Y{j k3. Therefore

Lemma 3.14 and Proposition 3.13 yield the following proposition.

Proposition 3.15: Weighted dependency graph for triangles in G(n, M)

Let L,, be the complete graph on B,, with the following weights

e if I and J are 3-element subsets with | I n J| = 2 (i.e. the corresponding triangle
share an edge), then the edge {I, J} gets weight 1;
e otherwise, the edge {I, J} gets weight 1/ M,,.

Then L, is a C'-weighted dependency graph for the family {Z; jko Ui, J, k} € By}, where
C' = (C)),»1 is a sequence that does not depend on 7.

With this proposition in hand, let us check if the asymptotic normality criterion is satis-
fied. It is easily seen that the graph L, is regular with weighted degree 3(n — 3) + (”53) | M.
The latter is of order ®(n) when M,, = n. Moreover, the variance of the number of triangles

in G(n, M,,) is known to be of order n?; see [Jan90]. Therefore for s = 5, one has

N D _
Dy, on

2/5,-112 _,
We conclude that the number of triangles in G(n, M},) is asymptotically normal. This result
had been previously obtained by Janson [Jan94] through martingales techniques (again for

alarger range of M,, and all subgraph count statistics).

3.3.4 Another example: patterns in set-partitions

Let us present a second example of application of the normality criterion through
weighted dependency graphs, for which [ am not aware of an alternative approach to prove
the same result.

We are interested here in uniform random set-partitions 7 of [n]. We see set-partitions
as sets of arcs, where there is an arc between any two consecutive elements in the same part.
This geometric representation induces a natural notion of substructure, or pattern, in set-

partitions. The following definition (illustrated on Figure 3.2) was suggested under a more
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i1 =2 9 = 3 i3=17 14 =8 i5 = 10

FIGURE 3.2 (Top) The arc pattern &/ corresponding to {{1,3,4},{2,5}}. (Bottom) An occurrence of «f
in alarger set-partition.

general form in [CDKR14].

Definition 3.16: Patterns in set-partitions

An arc pattern of length ¢ is a subset « < {(i, j) € [€] x [¢] : i < j} such that for distinct
elements (i, j1) and (iy, j») in &, we have i) # iy and j, # j». We say that the pattern
&/ occurs in a set partition 7 in positions x; < x» <... < xy if for every (i, j) € o there

is an arc from x; to x; in 7.

Arc patterns of length ¢ are exactly the arc representations of set-partitions of ¢, but in
the sequel, it is more natural to think of them as sets of arcs. We are interested in the random
variable Occ;'f := Occ? (;r), which gives the number of occurrences of a fixed arc pattern «/

in a uniform random set partition 7 of [n]. We have the following result, proved in [Fér20a].

Theorem 3.17: Asymptotic normality of pattern occurences in set-partitions

The number of occurrences Occ? of any fixed arc pattern « in a uniform random set

partition of [n] is asymptotically normal as n — oco.

This is a wide generalization of a theorem of Chern, Diaconis, Kane and Rhoades
[CDKR15], stating that the number of crossings is asymptotically normal. Their method is
based on the fact that, conditioned on minimal and maximal values of blocks, the number
of crossings is a sum of independent random variables. It does not seem to be generalizable

to other patterns.

As advertized, our proof is based on weighted dependency graphs. To this end, we call
1 [E'_]T] the indicator variable of the arc {i, j} (1 <i < j < n). The variables 1[7]\'] are correlated

even if they do not share an extremity. Intuitively, this happens for two reasons:

1) knowing that i and j are in the same part tends to reduce the total number of parts of
7 and thus increases the probability that some other integers, say k and ¢, are in the
same part.

2) the event l[ﬁ] = 1 means that i and j are in the same part, but also that all inter-
mediate points are in other parts; hence it carries information on these intermediate

points.

These correlations are however weak when the size of the set-partition becomes large. This
49



is quantified with weighted dependency graph in the following statement. We warn the
reader that we use here a more general version of weighted dependency graphs involving
a weight function ¥ on multiset of vertices. We apologize for using it without having de-
fined it in this manuscript. Unlike in other examples, the sequence C depends on n, but we

control this dependency: the normality criterion is easily adapted to this setting.

Proposition 3.18: Weighted dependency graph for arcs in set-partitions

The complete graph with weights

S 1 ifi=i"orj=j’;
w(llijl,1[i'j']) =
1/n otherwise.
is a (C,¥)-weighted dependency graph for the family {1[’1'7],1' < j}, for some
C = (C;) ;=1 depending on n with C, = ©(1) and some function ¥ on multiset of ver-

tices?.

“We use the notation f = #(g), standard in algorithmics, which means f = @ (g(logn)%) for some d.

The proof of Proposition 3.18 is involved and we do not even sketch it here. The stability
property of weighted dependency graphs presented in Section 3.3.2 then yields without ex-
tra effort a dependency graph for indicator functions of the occurrences of the pattern <« in
given sets of positions. We can then prove Theorem 3.17 as an application of the extended
normality criterion (Theorem 3.12; or more precisely its version for (C, ¥)-weighted depen-

dency graphs), after a delicate analysis of the variance. Details can be found in [Fér20a].

3.3.5 Improving the cumulant bound?

Looking at Proposition 3.7, it is natural to wonder if one can get sharp bounds on cumu-
lants in the context of weighted dependency graphs. This is indeed possible, but we need a

more restricted version of weighted depedency graphs, which was defined in [FMN19].

Definition 3.19: Uniform weighted dependency graph

Fix C > 0. A weighted graph L is a C-uniform weighted dependency graph for the
family {Yy, a € A} if, for any list (a;,..., @) of elements of A, one has

|x(Yay,..r Yo, )| =C" Y w(T).
TeST(Llay,....ar])

With this notion, one has the following bound for cumulants.

Lemma 3.20

Let {Yy, a € A} be a finite family of random variables with a C-uniform weighted de-
pendency graph L. We denote by N the number of vertices of I, and by D —1 its
maximal weighted degree. Then, for r = 1,

o £ %)

acA

<Nr'2p’1c’.




It is easy to see that a C-uniform weighted dependency graph is a C-weighted depen-
dency graph for the sequence C = (Cr" ~2),>1, but the converse is not true. Unfortunately,
among all the settings in which we have found weighted dependency graphs (SSEP, Ising
model, Markov chains, random matchings, permutations, set-partitions, G(n, M)), we have
been able to prove only in two situations that the weighted dependency graph is uniform:
for Markov chains and for the high temperature or strong magnetic field Ising model. In the
case of low temperature Ising model, there is a weighted dependency graph in the sense of
Defintion 3.11, but we can prove that it is not uniform in the sense of Defintion 3.19. In other
cases, we do not know whether the weighted dependency graphs which we have found are
uniform in the sense of Defintion 3.19 or not. Also, uniform weighted dependency graphs

are not stable by product (in the sense of Section 3.3.2), limiting their range of applications.
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CHAPTER 4

The Brownian separable permuton

Random permutations form a classical topic in discrete probability theory. As ex-
plained more generally in the introduction, a standard question is the asymptotic analysis
of X, = f(o,), where o, is a uniform random permutation of size n and f a well-chosen
statistics. We refer to [Gon44, Wol44] for early works of this kind, on the number of cycles
and runs of o, respectively. A more general result was obtained by Hoeffding [Hoe51], who
gives conditions for the asymptotic normality of statistics of the form f(0) = Y k<, Gk oK)
where for each n, we are given a matrix (ay, j)1<k, j<n 0f real numbers. Another well-known
example is that of the length of the longest increasing subsequence, see, e.g., [Rom15] for
an overview of the topic. We can also mention more recent works, for instance on pat-
tern occurrences [B6n10,JNZ15,Hof18], two-sided descent statistics [CD17], Manhattan dis-
tance [BHW19], number of distinct consecutive patterns [AFD*20], and so on... The list is

far from being exhaustive.

Parallel to this line of research, the analysis of non-uniform models, such as Ewens or
Mallows permutations and generalizations, has emerged, see e.g. [ABT03, Sta09, MNZ12,
Muk16, ICL18]. Another family of models is obtained by keeping the uniform measure, but
restricting it to some interesting subsets of permutations (in particular conjugacy classes
[FKL19, KL.20], or sets of pattern-avoiding permutations [ML10, MP14]). For some of these
models (either non-uniform, or uniform on a subset), in addition to studying some statis-
tics, it is interesting to look at the scaling limit of the permutations. An appropriate setting
for this is the theory of permutons [HKM*13], which has received recently an increasing in-

terest.

We report in this chapter on a series of papers [BBF*18, BBF*20, BBFS20, BBF*19b,
BBD*21], for which I have collaborated with E Bassino, J. Borga, M. Bouvel, M. Drmota,
L. Gerin, M. Maazoun, A. Pierrot and B. Stufler. To keep things concise, we chose to focus
on the main result of [BBF*19b] which is a scaling limit result for a large family of random
pattern-avoiding permutations (see definition below). In particular, we have exhibited a new

universal limiting object, called the Brownian separable permuton.
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4.1 Patterns and permutation classes

We now define patterns of permutations. This has become in the last 30 years a standard
notion in enumerative combinatorics, see [Vatl5] for a survey.

For any positive integer n, the set of permutations of [n] :={1,2,..., n} is denoted by &,,.
We write permutations of G, in one-line notationas o = 0(1)0(2)...0(n). For a permutation
o in G, the size n of o is denoted by |o]|.

Take 0 € G, and I c [n] of cardinality k; we consider the subsequence (o (7)) ;c; and look
for the permutation 7 of size k whose entries are in the same relative order as the entries
of (0(i))jer- Then 7 is the pattern of o in position I and denoted pat; (o). For example for
0 = 65831247 and I = {2,5,7} we have

paty, 5, (65831247) = 312

since the values in the subsequence o(2)o(5)0(7) = 514 are in the same relative order as in
the permutation 312 (the largest first, the smallest one in the middle, and the intermediate

value at the end).

If 7 = pat; (o) for some I c [n], then we say that r is contained in o, and that the subse-
quence (o (i));es is an occurrence of m in 0. When a pattern 7 has no occurrence in g, we say
that o avoids . The pattern containment relation defines a partial order on & = U, G,;: we

write 7 < o if w is a pattern of .

A permutation class, €, is a subset of G which is downward closed under <. Namely,
for every 0 € €, and every 7 < 0, it holds that 7 € €. It is known that permutation classes
may equivalently be defined as subsets of G characterized by the avoidance of a (finite or
infinite) family B of patterns. If we require in addition that B is an antichain (i.e. consists of
elements incomparable for <), then B is uniquely determined by €. This set B is called the
basis of €, and we write 6 = Av(B).

The general question we are interested in is the description of the asymptotic properties
of a uniform random permutation of large size in a given class ¢¥. Though permutation
classes are most often studied with an enumerative perspective, the probabilistic literature
on the subject has developed quickly in the past few years with a variety of approaches, see
for example [MP14,HRS17,Jan19, MP16, Bor20b].

4.2 Substitution operation and an enumerative result

The enumeration of permutations avoiding given patterns is a difficult problem in gen-
eral’, for which many different approaches have been developed. This makes the subject
fascinating, but also suggests that it is rather hopeless to obtain general precise results on

uniform random permutations in any class €. Therefore the best we can do is to consider a

las testified by the still open question of enumerating 1324-avoiding permutations, see [BBEPP20] and ref-
erences therein.
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large family of classes € with a common structure. In this spirit, we focus here on permuta-
tion classes containing only finitely many simple permutations.

We recall the necessary definitions, originally introduced in [AA05]. Throughout this
chapter, we identify permutations with their diagrams: the diagram of o is a square grid with
dots at coordinates (i,0 (7)) (for i in {1,...,|o[}). For 8 a permutation of size d, the substitu-
tion @[z, ...,n'?] is obtained by inflating each point (i,0(i)) of O by a square containing
the diagram of 7, see Fig. 4.1.

21 4

[
2413[132,21,1,12] 121 _ o] — 24387156
132

[o]

FIGURE 4.1 Example of substitution of permutations.

A simple permutation is a permutation of size at least 2 that can not be obtained as sub-
stitutions of smaller permutations. Equivalently a permutation is simple if it does not con-
tain a nontrivial set of consecutive values in consecutive positions. In algebraic terms, the
simple permutations are the generators of the set of all permutations with respect to the
substitution operation (which gives to the set of permutations an operad structure).

In [AA05], the following theorem was proved:

Theorem 4.1

Every class € containing only finitely many simple permutations has a finite basis

and an algebraic generating function.

We call such classes finitely generated classes and study here uniform random permuta-

tions in such classes.

4.3 Permutons

Now that the models we are interested in are well-defined, we need to be more precise
on the kind of asymptotic results we are looking for. As suggested earlier, we will be inter-
ested in scaling limits in the sense of permutons. The latter notion first appeared under a
different name in a paper of Presutti and Stromquist [PS10] in the context of packing prob-
lems. Later in [HKM™*13], it was rediscovered as a limit object for permutation sequences;
see also [BBF*20, Section 2] for an introduction to permutons close to the point of view used
here.

Formally, a permuton is a probability measure u on the unit square [0, 112 with uniform
marginals. The latter means that if we project p on the vertical (resp. horizontal) axis, we get
the uniform measure on [0, 1]. Permutons generalize permutations in the following sense:

with a permutation o € G,,, we associate the permuton p; with density

Ko (dxdy) = nlg(xn)=rymdxdy,
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n=52413= R 1

FIGURE 4.2 Seeing a permutation as a measure on the unit square, called permuton. Each gray square
on the right-hand side has total mass 1/n = 1/5 (i.e. density n = 5 w.r.t to the 2-dimensional Lebesgue
measure), so that the total mass is 1.

where [7] is the nearest integer above ¢. Note that it amounts to replacing every point
(i,0(i)) in the diagram of o (rescaled to fit in the unit square) by a square of the form
[(i—1/n,i/n] x [(o(i) —1)/n,o0(i)/n], with a mass 1/n uniformly distributed on it. An ex-
ample is given on Fig. 4.2.

The space .4 of permutons is equipped with the topology of weak convergence of mea-
sures, which turns it into a compact metric space. This allows to define convergent se-
quences of permutations: we say that (0,), converges to a permuton p when (us,) — p
weakly. This is a natural notion of scaling limits for permutations. Interestingly, permuton
convergence is also equivalent to the convergence of pattern occurrences, see [HKM™13]
and [BBF'20, Theorem 2.5]. In this sense, permuton convergence is a natural analogue of
the notion of dense graph convergence (also known as graphon convergence), which has
been an active research topic in graph combinatorics in the last 15 years, see e.g., Lovasz’
book [Lov12].

In this thesis, we will use the framework of permutons to describe limits of (random)
permutation sequences. By abuse of language, we will say that a permutation class € con-
verges to a (possibly random) permuton p if a uniform random permutation o, of size n in
%€ converges in distribution to y. We mention that permutons have also been studied with
other purposes: packing problems [PS10], large deviation theory [KKRW20], quasirandom-
ness [KP13,CKN'20], ...

4.4 Main result: a dichomotomy for scaling limits of finitely

generated classes

We now state informally the main result of the paper [BBF*19b] (and of this sec-
tion of the thesis); note that the technical condition and the limiting objects in the the-
orem will be discussed in Sections 4.4.1 to 4.4.3 below. We denote by A3 the simplex
]4

{(x1,x2, x3,x4) € [0;1]%; X1 + X2 + X3+ x4 = 1}.
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(a,b)

FIGURE 4.3 The support of the X-permuton with parameter p = (plfft, pfght, pl_‘Eft, pr_ight), denoting

a=peft 4 pleftand b = p'et + prisht Left: The generic case. Right: A degenerate case where b = 0.

Theorem 4.2: Scaling limits of finitely generated classes

Let € be a permutation class with finitely many simple permutations and let, for each
n=1, o, be a uniform random permutation of size n in 6. Under a technical condi-

tion discussed below, we have the following:

e either o, converges to the so-called Brownian separable permuton of parameter

p€(0,1);
_ left . right _left _ right
* or o, converges to the X -permuton of parameter (p-£", p.° ", p*"t, p™8") € A3.

In both cases, the parameter(s) are computable, given the finite basis of €.

The hypothesis “€ contains finitely many simple permutations” (and the technical con-
dition) are restrictive but the theorem still applies to a large family of classes. In comparison,
most results in the literature concern a single class [HRS17,BS20,Bor20a], or in the best cases
a simply-indexed family of classes [BDS19, HRS20]; our result is much more general. An ex-
ception is Bevan’s limit shape result on monotone grid classes [Bev15, Chapter 6], which also

applies to a large family of classes.

It is remarkable that the limiting permutons in Theorem 4.2 fall into two simple families;
this can be seen as an instance of a universality phenomenon, as discussed in the introduc-

tion. We now describe the limiting objects together with examples.

4.4.1 The X-permuton

Let p = (pleft, pl8™, pleft prishty ¢ A, We set a = p'°ft + pleft and b = pleft + pright. The

X-permuton ,uff with parameter p is the probability measure constructed as follows:

* it is supported on the union of the four line segments joining the point (a, b) to the
corners of the unit square [0, 113
« the weights of these segments are respectively p'eft, pfght, pleft, pright.

 for each segment, its weight is uniformly distributed on the segment.
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FIGURE 4.4 Large uniform random permutations in the classes €;X, €;* and 6;", respectively.

We refer to Fig. 4.3 for a visual representation of uff . As shown on this figure, some pa-
rameter might be equal to 0, leading to degenerate cases.

We now give three examples of classes converging to X-permutons (the first and third
ones are taken from [BBF*19b] and analyzed in details there, the second class has not been
included in a published work but can be analyzed in a similar way). The classes we consider

are

€, = Av(2413,3142,2143,34512); 6, = Av(231,21543);
€5 = Av(2413,1243,2341,41352,531642).

We have plotted large uniform random permutations taken from those classes? on Fig. 4.4.
The convergence to X-permutons (with respectively 0,1 and 2 coordinates equal to 0 in the

parameter p) is clearly visible on the pictures.

4.4.2 The Brownian separable permuton

The Brownian separable permuton is more delicate to define than the X-permuton (but
also more interesting!). We start with a Brownian excursion® e: [0,1] — R*, and we assign to
local minima* of e independent random signs (S;);>1 with P(S; = @) = p=1-P(S; = o).

From this “signed Brownian excursion” (e, (S;);>1), we first construct an “infinite per-
mutation” 0, which is a Lebesgue preserving function from [0, 1] to [0,1]. This function
O satisfies the following property: for almost every x < y, we have®

Ooo(Y) < 00o(x) if and only if sgn(argmin e) =e. 4.1)
[x, 1]

2Most simultations have been conducted with the sage module Specifier, developed by my collaborator M.
Maazoun.

3For the reader not familiar with stochastic processes, we recall that one can think at a Brownian excursion
as a Brownian motion on [0, 1] starting at 0 conditioned to stay nonnegative and to come back to 0 at time 1.

“Itis easy to show that a.s., a Brownian excursion has countably many local minima, explaining the indexing
of S; by i = 1; one has to be careful however in how we index local minima, so that the relevant variables, such
as the function o, defined below, are measurable; we will not discuss such details here, and refer the reader
to [Maa20].

5We note that argmin, e is a.s. well-defined, since a.s., all local minima of a Brownian excursion have
distinct values.
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FIGURE 4.5 A signed Brownian excursion (with only finitely many signs represented) and the graph
of the associated infinite permutation o,. We have circled some points of the Brownian excursion
and the corresponding points of the graph of o to illustrate the definition. The minimum of the
excursion between the circled points carries a © sign and, consequently, the corresponding points in
the graph of o, form an inversion.

19O B
= 3214576

FIGURE 4.6 A signed tree and the associated separable permutation. We have circled some leaves and
the corresponding elements in the permutation to illustrate the definition. We see that leaves 2 and
3 have the same parent carrying a © sign and that the corresponding elements form an inversion. On
the other hand the closest common ancestor of leaves 2 and 7 (resp. 3 and 7) is the root of the tree
which carries a @ sign and the corresponding elements in the permutation are in increasing order.

In other words, there is an inversion between x and y if and only if the local minimum of e
on the interval [x, y] carries a © sign. See Fig 4.5.

This definition might seem mysterious but this is in fact a natural extension of the en-
coding of the so-called separable permutations by their seraparation trees. A separation tree
is a plane tree with @ or © signs on its internal vertices. We associate a permutation to it as
follows. First, we label the leaves from left to right. Then we require that there is an inversion
at positions (i, j) in the permutation if and only if the closest common ancestors of the i-th
and the j-th leaves in the tree carries a © sign; see Fig 4.6. Separable permutations are the
permutations that can be obtained through this process.

Brownian excursions are known to represent limits of natural models of random trees;
see the seminal work of Aldous in the early nineties [Ald93]. In this context, leaves of the in-
finite tree correspond to (a measure 1 subset of) the interval [0, 1] and the closest common
ancestor between two leaves is matched with the minimum of the excursion on the corre-
sponding interval. Eq. (4.1) is therefore the natural extension of the discrete construction
above to the infinite setting.

It is a simple exercise to show that there is (up to equality on a set of measure 1) a unique
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Lebesgue preserving function o, satisfying (4.1). Explicitly o, is given by
Ooo(t) =Leb ({x : x < tand sgn(argmine) = @}) +Leb ({y: y>tand sgn(argmine) = e}).
[x,1] (2,1

Now that we have an “infinite permutation” o, we shall construct a permuton, i.e. a
measure on [0, 1]2 from it. By analogy with the discrete case (see Fig. 4.2), for each ¢ in [0, 1]
we want to put some mass at coordinates (f,0.,(¢)). The natural choice is to take the push
forward of the Lebesgue measure by the application ¢ — (f,0(1)).

This construction gives us a random permuton (the randomness coming from the initial
Brownian excursion and the signs on its local minima) whose law depends on the parameter

p in [0,1]. We denote it I.t];,r and call it (biased) Brownian separable permuton.

We now discuss examples of permutation classes 6 converging to p];’r. The most stud-

6 considered in the arti-

ied class in this category is the class of separable permutations
cle [BBF*18]; by symmetry, we have p = 1/2 in this case. More generally’, classes with
finitely many permutations and closed for the substitution operation also converge to pgr,
for some parameter p depending of the class. Here, the assumption of having finitely many
simple can be relaxed to an analytic assumption on the generating series of the simple per-
mutations in ¢, see [BBF*20]. Finally, Theorem 4.2 applies also to some classes which are
not closed by substitution and nevertheless converge to ugr.

On Fig 4.7, we plot large uniform random permutations, respectively taken from the

classes

‘glb =Av(2413,3142), <€2b =Av(24153,25314,31524,41352,246135,415263),
ngb =Av(2413,31452,41253,41352,531246).

The first one is the class of separable permutations, the second one a substitution-closed
class with infinitely many simple permutations (in fact, it is the substitution closure of
Av(123), originally considered in [ARS11]; see [BBF*20] for details on its scaling limit), and
the third one has only finitely many simple permutations but is not substitution-closed
(see [BBF*19b] for details). The universality of the limit is visible on the pictures, which

all have the same “aspect”.

4.4.3 The technical condition

We now state and discuss the technical condition in Theorem 4.2. For this, we need to go
a bit backwards and discuss enumerative aspects of finitely generated classes. In particular,
we recall (see Theorem 4.1) that the generating series of such a class € is always algebraic.
In the paper [BBP*17] (see also [BHV08]), this algebraicity result has been strengthened:
an algorithm is given to compute a combinatorial specification for any finitely generated

permutation class 6.

6Separable permutations are standard objects in enumerative combinatorics and algorithmics (see, e.g.,
[BBL98] and [AHP15]), but they also appear in real analysis (describing reordering of polynomials going
through a common root [Ghyl7]) and in probability theory (bootstrap percolation [SS91b]).

"The class of separable permutations is substitution-closed and contains no simple permutations.
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FIGURE 4.7 Large uniform random permutations in the classes €7, <€2b and <€3f’ , respectively.

In this setting, a combinatorial specification is a finite system of equations of the kind:
€; =P;(Z,%6y,...,6;), 0<i<d, 4.2)

where the €; are sets of permutations included in ¢, with €, = ¢, where Z is a set with
only one permutation of size 1 and where the P; are polynomials. The operations + and x
in the polynomials P; act on sets of permutations in the sense of (unlabelled) combinato-
rial classes (see, e.g., [FS09]): + represents a disjoint union and x a direct product. A list
of permutations in a direct product is then seen as a single permutation in a way which
depends on the equation; it can be a direct sum & or a skew sum o, or a substitution
(my,...,Tg) — almy,...,mq] for some a. We assume that the system of equations uniquely
determines the class €6; (assuming that there is no element of size 0).

It is well-known that such a specification yields a polynomial system of equation for the
generating series of the ¢, implying that they are algebraic (and even N-algebraic). Such a
system can be used to analyze the behavior of the generating series at their singularity (and
hence to find the asymptotic enumeration of the class). To get general results, it is standard
to assume that the dependency graph of the system is strongly connected; see e.g. [FS09, Thm
VIIL.6] and [Drm09, Thm 2.33]. For the reader’s convenience, we recall the relevant defini-
tions. The dependency graph of the system is the directed graph on {0,...,d} with an edge
from j to i if 3—% # 0, i.e. if the class €; appear in the equation defining 6;. Besides, a di-
rected graph is strongly connected if there is a directed path going from any vertex to any
other vertex in the graph.

Such an hypothesis would be too restrictive for the application to permutation classes.
We make a weaker hypothesis and assume only that the dependency graph restricted to those
€; with a minimal radius of convergence (which we call critical families) is strongly con-

nected. This is the technical hypothesis in Theorem 4.2.

Facing such a hypothesis, several questions occur:

1) Is such a condition really necessary or just needed in the proof? In other words, are
there some finitely generated classes whose limit is neither an X-permuton, nor a
Brownian separable one?
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2)
3)

FIGURE 4.8 Alarge uniform random permutation in some finitely generated class.

Is the condition often verified?

Given a specific class, how can we check whether the condition is verified or not?

Let me discuss briefly these questions:

1y

2)

3)

There are indeed finitely generated classes with other limits than X or Brownian sep-
arable permutons. An example is given on Figure 4.8. In this example, one can prove
that the limiting permuton is a juxtaposition of two X-permutons of random relative
sizes [BBF* 19b, Proposition 7.8]. In [BBF"19b], we exhibited another example, where
the limit is the diagonal permuton with probability 1/2 and the antidiagonal permu-
ton with probability 1/2 [BBF*19b, Proposition 7.5]. Though both the diagonal per-
muton and the antidiagonal ones are special cases of X-permutons (and of Brownian
separable permutons), this mixture is not.

We note that Theorem 4.2 is nevertheless useful to describe the limit of these classes.
Indeed, we can apply it to appropriate subfamilies to find the limit of uniform permu-
tations in those subfamilies, and then use some equations of the specification (4.2) to

infer the limit of the class we started from. We refer to [BBF"19b, Section 7] for details.

Thanks to the software Specifier developed by M. Maazoun, which computes auto-
matically combinatorial specifications of finitely generated classes, we have tried to
apply Theorem 4.2 to a number of examples. In many cases, the strongly connected-
ness assumption was directly verified ; in other cases, it was applicable to a family with
obviously the same limit (e.g. the class € from which we remove a single permutation
of each size). This seems to indicate that Theorem 4.2 has indeed a large range of ap-
plications. But unfortunately, we have no mathematical statement on the proportion
of finitely generated classes, to which this theorem applies.

Let us now discuss how to check the technical condition. There is no automatic way
to determine which families €6; in the specification (4.2) are critical. Nevertheless,
strongly connected components of the dependency graph can be computed easily
and, in a given strongly connected component, either all classes are critical, or none
of them are. We then need ad-hoc arguments to distinguish between these two cases.
Once critical families have been identified, seeing whether the dependency graph re-
stricted to those families is strongly connected or not is straight-forward. In case it is,

we also provide a simple condition to determine whether the limit is an X-permuton
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or a Brownian separable one. The X-permuton occurs when the system restricted to
critical families is linear. At the contrary, when there are quadratic or higher degree

terms in this restricted system, then the limit is a Brownian separable permuton

4.5 The proof approach via analytic combinatorics

We describe in a nutshell the strategy used in [BBF*19b] to prove Theorem 4.2.

We want to prove the convergence of uniform random permutations in some class € in
the topology of permutons. As mentioned in Section 4.3, a general result [BBF* 20, Theorem
2.5] relates such convergence to the convergence, for each k = 1, of the pattern induced by
k random elements of the permutation. To study the distribution of this random pattern,
we enumerate, for each n, the family %6, of permutations in 6 with k marked elements
inducing the pattern n. It turns out that the combinatorial specification that we have for €
can be refined into a combinatorial specification for €.

We analyze the resulting specifications with tools of analytic combinatorics. Indeed as
said above, combinatorial specifications yield systems of equations for the associated gen-
erating series. When the equations are analytic on a sufficiently large domain and when
the dependency graph of the system is strongly connected, two different kinds of behavior
might happen:

* either the system is linear, and the series have all polar singularities at their radius of
convergence [BD15];
e or the system is called branching, and the series have all square-root singularities (this

is known as Drmota-Lalley-Woods theorem in the literature [FS09, Drm09]).

We apply these theorems to the critical series in our (refined) specifications, considering
the non-critical series as parameters. Once we know the singular behavior of the series,
the transfer theorem of analytic combinatorics [FS09] gives us the asymptotic number of
elements in € and €, for all 7. We deduce from this the probability that k marked elements
in a uniform permutation in ¢ induce a given pattern 7. Comparing these probabilities to

those in the candidate limiting permutons proves the desired convergence.

4.6 Connection with random trees

There is another way to think at (and in some cases to prove) our convergence results
for random permutations in finitely generated classes. The substitution operation on per-
mutations described in Section 4.2 allows to encode bijectively permutations through some
plane rooted trees called substitution trees®. These trees have leaves corresponding to the

elements of the permutations, and internal nodes decorated by simple permutations. They

8Substitution trees are a generalization of the separation trees mentioned in Section 4.4.2.
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FIGURE 4.9 A permutation and its associated substitution tree.
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FIGURE 4.10 Substitution trees of random permutations in finitely generated classes. Left: in the
case of convergence to an X-permuton. Right: in the case of convergence to a Brownian separable
permuton. We observe that the tree on the left hand side is more “elongated”.

encode the construction of the permutation by successive substitutions into simple permu-
tations. An example is given in Fig. 4.9 (the precise definition is not needed for this discus-

sion).

Through this encoding our random permutations in classes yield random trees. The di-
chotomy of Theorem 4.2 seems also to hold at the level of random trees. Let g, be a uniform
random permutation in a finitely generated class €. We believe that we have the following

convergences of the undecorated substitution trees (seen as measured metric spaces):

* If o, converges to a Brownian separable permuton, then the associated substitution
tree converges after normlization to Aldous’ Brownian CRT (CRT stands for Contin-
uum Random Tree); see [Ald93] for a definition of this now classical object.

* On the other hand, if o, converges to an X-permuton, then the associated substitu-

tion tree converges after normalization to the line segment [0, 1].

We refer to Fig. 4.10 for simulations supporting this belief.

Thanks to the specification (4.2), one can construct the substitution tree of a uniform
random permutation in 6 as a multitype Galton-Watson tree conditioned to have 7 leaves
(the colors in Fig. 4.10 correspond to the different types in this Galton-Watson representa-
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tion of the substitution trees; the sizes differentiate critical and subcritical types). Conver-
gence results to Aldous’ Brownian CRT for multitype Galton-Watson trees are available in
the literature [Mie08, HS19], but only in the irreducible case (corresponding to the depen-
dency graph of the specification being strongly connected). To prove the first item above,
we would therefore need to adapt such results to our weaker connectedness hypothesis on
the graph of the specification. Regarding the second item, we are not aware of convergence
results of multitype Galton—Watson trees to the line segment, but this might be easier than

the convergence to the Brownian CRT.

Knowing the limit of the undecorated substitution tree is only a first step in proving per-
muton convergence, since the permutation depends not only on the shape of this tree, but
also on the decorations of the internal nodes. More precisely, one needs to understand the
law of the decorations of common ancestors of random leaves of the tree. This determines
in particular the parameters of the Brownian separable or X-permuton appearing in Theo-
rem 4.2. This would certainly needs some extra work, but is probably not out of reach with

existing methods in the random tree literature.

We have not followed this strategy of proof in the general setting of Theorem 4.2. How-
ever, we have developed it in the specific case of substitution-closed classes. In this case,
we found a combinatorial construction to reduce the study of the multitype Galton-Watson
tree to that of a monotype one, on which much more is known. This has allowed us to
reprove permuton limit results for uniform random permutations in substitution-closed
classes (with a slight improvement on the range of applications of the result). With this
strategy, we have also found new local limit results? for such random permutations. This is
the content of the article [BBFS20], written in collaboration with J. Borga, M. Bouvel and B.

Stufler. We will not give further details here.

4.7 Some “concrete” corollaries

Scaling limits of combinatorial objects are rather abstract results, and one may ask
whether one can deduce from them some more “concrete” corollaries, like the convergence
of some real-valued statistics. We will discuss this question for a sequence o, of random
permutations converging to the Brownian separable permuton (which is the most interest-

ing case in Theorem 4.2).

We have already mentioned that the convergence in terms of permutons is equivalent to
the convergence of pattern densities. For a pattern 7 in G and a permutation o in G,,, we

define occ(t,0)

()

which are respectively the number of occurrences and the density of the pattern 7 in 0. Then

occ(t,0) =#{I < [n]:pat;(0) =1},  0Cc(r,0) =

we have the following result (which is a particular case of [BBF*20, Theorem 2.5]):

9A notion of local limit for permutations was recently suggested by my student J. Borga, co-advised by M.
Bouvel, during his PhD thesis [Bor20b].
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Proposition 4.3

Fix p € (0,1). There exists a family of random variables (A;(p); T € Ur>1 ©x) with the
following property. If a sequence of random permutation o, converges to the Brow-
nian separable permuton pgr, then, jointly for all 7, the random variable occ(z, o)
tends to A;(p).

Unfortunately, we are not able to compute neither the density nor the generating func-
tions of A;(p). Moments of A;2(1/2) can be computed either through a combinatorial de-
scription [BBF*18, Section 9.1] or via an involved inductive formula (unpublished); with

either approach, finding a general compact formula seems out of reach.

Since permutons are measures on [0, 1]2, a natural statistics is the weight of a given rect-
angle R = [a; b] x [c;d] < [0, 11%. ifo, converges to the Brownian separable permuton pgr,

then we have

Lolug:. (i oald v
E[E[#{z (4,220 € RY] — B[y (B)]. (4.3)

n’ n
It turns out that the right-hand side can be made explicit. The following formula has been
found by M. Maazoun in [Maa20]: E[ ugr(R)] = [ra,(x,y)dxdy, where

B min(x,y) 3p2(1 _ p)z da
aptoy) = max(0,x-+y—1) 32(p? | (-p)? p? a-p?\5/2’
T on(ate- @A -x-y+ a(y- @) (L + Uy e P

The expression is arguably involved, but it is explicit and yields easily numerical approxima-
tion. Hence, the convergence to the Brownian separable permuton gives us a good control

on the average repartition of points in the permutation diagram.

The last statistics I want to discuss is the length of the longest increasing subsequence
LIS(o) of a permutation o. The asymptotic behavior of LIS(s,), where s, is a uniform ran-
dom permutation in the whole symmetric group &, is a famous problem in discrete proba-
bility theory, already discussed in Section 1.3 of this thesis. Longest increasing subsequences
in random permutations in classes are a much newer research topic: see [MRRY20] and ref-
erences therein. In the recent preprint [BBD*21], we show the following result.

Proposition 4.4

Foreach n =1, let o, be a sequence of random permutations tending to the Brownian

separable permuton pgr for p€[0,1). Then % converges to 0 in probability.

To obtain this result, we consider the inversion graphs G, of the random permutations
o ,. We show that G, converges to W), a graph analogue of pgr introduced in [BBF*19a],
which we call Brownian cographon. Also LIS(o ;) corresponds to the size of the largest inde-
pendent set, called independence number, of G,.

It turns out that a notion of independence number « of graphons has been introduced
in [HR20], where it is proved that it is lower-semicontinuous. Proposition 4.4 then reduces
to the fact that, a.s., the Brownian cographon has independence number 0. The latter is
proved using a self-similarity property of the Brownian excursion, and analyzing a resulting
(in)equation in distribution for a(W),). Details can be found in [BBD*21].
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Thanks to Theorem 4.2, the above results, namely Proposition 4.3, Eq. (4.3) and Proposi-

tion 4.4, apply to uniform random permutations in many finitely generated classes.

4.8 Other combinatorial objects with substitution operations

We now take a bit of hindsight on our results on permutation classes and will discuss
analogues for other combinatorial objects. A simple summary of our work is that we have
taken advantage of the substitution operation on permutations and the associated tree en-
coding to obtain probabilistic results on uniform random objects in classes.

It turns out that permutations are not the only combinatorial objects on which a substi-
tution operation and/or an associated tree encoding has been defined and studied. Many
other examples can be found in the theory of combinatorial operads, see e.g. [Cha08, Gir18]
(an operad is an algebraic structure, whose axioms correspond in some sense to natural as-
sociativity properties of substitution operations). For graphs, two kinds of decomposition
trees have similar properties to substitution trees of permutations: modular decomposition
trees and split decomposition trees [HP10, CAMR12]. These decomposition trees can be
useful to study uniform random graphs in these families.

We have started this program by looking at cographs, which can be defined through
their modular decomposition trees. We proved in [BBF*19a] that a uniform random co-
graph tends in the sense of graphons to a Brownian limiting object W),, already mentioned
above, which is the graphon counterpart of pgr. We also refer to [Stul9] for a proof of the
same result using random tree theory, in the spirit of Section 4.6.

This general idea of using substitution decompositions to prove scaling limit results can
be pushed further. It would be for instance interesting to look at other classes of graphs
through their modular or split decomposition trees. In the latter case, distance-hereditary
graphs form the first natural example, see [CFL17] for their enumeration through their split
decomposition tree. Also, recently, substitution operations on matchings have been defined
in order to enumerate matching classes modeling RNA secondary structures [Jef15]. This

opens the door to a probabilistic analysis of random matchings in such classes.
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