{{{id=0| Sym=SymmetricFunctions(QQ) /// }}} {{{id=2| s=Sym.schur(); h=Sym.homogeneous() /// }}} {{{id=3| s[2,1] /// s[2, 1] }}} {{{id=4| s21=s[2,1].expand(3);s21 /// x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2 }}} {{{id=5| s[2,1].parent() /// Symmetric Function Algebra over Rational Field, Schur symmetric functions as basis }}} {{{id=14| A=s[2,1]*h[2,1];A /// s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 3*s[3, 2, 1] + s[3, 3] + 2*s[4, 1, 1] + 2*s[4, 2] + s[5, 1] }}} {{{id=15| 2*s[2,1]+h[2,1] /// 3*s[2, 1] + s[3] }}} {{{id=16| def f(m,c): if len(m) > 3: return (m,0) return (m,c) A.map_monomial(f) /// s[2, 2, 2] + 3*s[3, 2, 1] + s[3, 3] + 2*s[4, 1, 1] + 2*s[4, 2] + s[5, 1] }}} {{{id=17| h(s[3,2]) /// h[3, 2] - h[4, 1] }}} {{{id=18| h(s[10]^4) /// h[10, 10, 10, 10] }}} {{{id=23| /// }}}